64. Highway Design A section of highway connecting two hillsides with grades of 6% and 4% is to be built between two points that are separated by a horizontal distance of 2000 feet (see figure). At the point where the two hillsides come together, there is a 50-foot difference in elevation. Highway B(1000, 90) A(-1000, 60) 6% grade 4% grade 50 ft Not drawn to scale (a) Design a section of highway connecting the hillsides modeled by the function f(x) = ax³ + bx² + cx + d, -1000 s xs 1000. At points A and B, the slope of the model must match the grade of the hillside. (b) Use a graphing utility to graph the model. (c) Use a graphing utility to graph the derivative of the model. (d) Determine the grade at the steepest part of the transitional section of the highway.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
64. Highway Design A section of highway connecting two
hillsides with grades of 6% and 4% is to be built between two
points that are separated by a horizontal distance of 2000 feet
(see figure). At the point where the two hillsides come
together, there is a 50-foot difference in elevation.
Highway
B(1000, 90)
A(-1000, 60)
6% grade
4% grade
50 ft
Not drawn to scale
(a) Design a section of highway connecting the hillsides
modeled by the function
f(x) = ax³ + bx² + cx + d, -1000 s xs 1000.
At points A and B, the slope of the model must match the
grade of the hillside.
(b) Use a graphing utility to graph the model.
(c) Use a graphing utility to graph the derivative of the model.
(d) Determine the grade at the steepest part of the transitional
section of the highway.
Transcribed Image Text:64. Highway Design A section of highway connecting two hillsides with grades of 6% and 4% is to be built between two points that are separated by a horizontal distance of 2000 feet (see figure). At the point where the two hillsides come together, there is a 50-foot difference in elevation. Highway B(1000, 90) A(-1000, 60) 6% grade 4% grade 50 ft Not drawn to scale (a) Design a section of highway connecting the hillsides modeled by the function f(x) = ax³ + bx² + cx + d, -1000 s xs 1000. At points A and B, the slope of the model must match the grade of the hillside. (b) Use a graphing utility to graph the model. (c) Use a graphing utility to graph the derivative of the model. (d) Determine the grade at the steepest part of the transitional section of the highway.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning