
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
This problem is (6.30) from a book "

Transcribed Image Text:6.30. A fireman is using a high-pressure stream of water from a hose to combat a raging
forest fire. At one end, the hose has an inside diameter of d
connected to a high-pressure water reservoir at P1 300 psi. At the other end is a
nozzle with diameter d2 3 cm that is exposed to atmospheric pressure P2= 1 atm
To a good approximation, flowing water in this process can be modeled as having a
5 cm and is
3
constant temperature and constant mass density p = 1 g/cm = 1,000 kg/m2.
incompressible liquid, the following equation well describes
Moreover, for an
isothermal enthalpy changes:
Δh xυΔΡ
where v is the volume per mole or molecule (depending
(a) How much faster is the velocity of the exiting
on the basis of h)
water at the nozzle than that of
factor (e.g., u2=
the entering stream at the reservoir? Express your answer as a
1.5 u1).
(b) If the hose is well insulated, find the exit velocity of the stream of water, in m/s.
(c) Find the exit volumetric flow rate of water, in gal/s.
(d) Instead, you suspect that the hose is not well insulated because you find that
the actual, measured exit velocity is 90% of what you calculated in part (b).
The inlet velocity, however, remains the same. This suggests that frictional
losses result in a dissipation of heat to the environment as the water maintains
constant temperature. Find the heat lost in kJ per kg of water
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 6 steps with 5 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Similar questions
- This problem is (12.19) from a book "Thermodynamics and Statistical Mechanics An Integrated Approach by M. Scott Shell"arrow_forwardThis problem is (7.9) from a book "Thermodynamics and Statistical Mechanics An Integrated Approach by M. Scott Shell"arrow_forwardI resubmitted the question again because it wasn’t Reynold number before thanksarrow_forward
- Q.1 Find the solution of following ODE by Laplace transform of the function x( t ) and Ca(t) that satisfies the differential equation and initial conditions. (b) 3 d²x dt² dx - x = 2 dt -2.5 d at x(0) = 1arrow_forwardWhat is the Gibbs phase rule for the general system?arrow_forwardMULTIPLE CHOICE -The answer is one of the options below please solve carefully and circle the correct option Please write clear .arrow_forward
- The discipline dealing with material distribution between coexisting phases is called Select one: O a. Fluid dynamics O b. Physical chemistry O c. Civil engineering O d. Phase-equilibrium thermodynamicsarrow_forwardi am confused on where you are getting these equations. is f--- friction? why is it 64/row VD/viscosity? are there other units at play here? i am not seeing how they cancel out to become Pa/marrow_forwardA question in chemical engineering.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The

Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY

Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall


Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning

Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The