6. Solve 6. Solve (a) 4x + 3y = 28 2x + 5y = 42 the system Ax = d by matrix inversion, where (b) 4x1 + x2 - 5x3 = 8 -2x1 + 3x2 + x3 = 12 3X1 X2 + 4x3 - 7. Is it possible for a matrix to be its own inverse? = 5

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Where did I go wrong on this problem? 

5. Find the inverse of
4 1 -5
-[
3 1
3 -1 4
A =
-2
Chapter 5 Linear Models and Matrix Algebra (Continued) 103
6. Solve the system Ax = d by matrix inversion, where
(a) 4x + 3y = 28
(b)
2x + 5y = 42
5.5 Cramer's Rule
7. Is it possible for a matrix to be its own inverse?
4x1 + x2 - 5x3 = 8
-2x₁ + 3x2 + x3 = 12
3x1 - x2 + 4x3 = 5
The method of matrix inversion discussed in Sec. 5.4 enables us to derive a practical, if not
always efficient, way of solving a linear-equation system, known as Cramer's rule.
Derivation of the Rule
Given an equation system Ax = d, where A is n x n, the solution can be written as
1
[by (5.16)]
1-¹d-
-
(adj A)d
Transcribed Image Text:5. Find the inverse of 4 1 -5 -[ 3 1 3 -1 4 A = -2 Chapter 5 Linear Models and Matrix Algebra (Continued) 103 6. Solve the system Ax = d by matrix inversion, where (a) 4x + 3y = 28 (b) 2x + 5y = 42 5.5 Cramer's Rule 7. Is it possible for a matrix to be its own inverse? 4x1 + x2 - 5x3 = 8 -2x₁ + 3x2 + x3 = 12 3x1 - x2 + 4x3 = 5 The method of matrix inversion discussed in Sec. 5.4 enables us to derive a practical, if not always efficient, way of solving a linear-equation system, known as Cramer's rule. Derivation of the Rule Given an equation system Ax = d, where A is n x n, the solution can be written as 1 [by (5.16)] 1-¹d- - (adj A)d
©
198
STEP 1: Find A
x
B
Exercise 5.प
A =
1274
98
니
911 42 433
9a3 952
(4) (3) (4) - (40) (-1)
५
-9604
98X 98
23
3-14
9.3921932
913922931
+ (-3) (0) (0) -(3) () ()
+/-
14=98
98
- 5
31
-14
STEP 3: Find A*1 = 98 (C)
-1078
2) (₁
98
1
१४
-98
798
X
( 48 ) (4+ * 44 ) (++ * )
X
98 98
98x
98
- 588
98% 98
-১।
उप
)
11 -5/4-5
443 4
उन
11 -514 -51 4 1
311-2
14-51
-23
STEP 2: Find Cofactor of each element
98
4/3
-686
98
* =
9604
Xx98
-23
31
X
1
X>
X 3
912 925 931
911921933
+013 - 024)
5
d=
48 +4+3 +8 -10 + 45= 98
1274
9604
-98
9604
1
1-14-6 14
- 9604
9604
8
12
13-11-7
-1 1
-1078
9604
१४
9604
n
-588
9604
= CM
-686
9604
98
9604
9604
9604
"
"
A
-1
Exercise 5.4
Step4 A1 (1)
1274
1604
-98
9604
-9604
9604
-391
-1078
4604 9604
48
9604
-588
9604
97,883,968
72,236,816
- 7,529,536
72,236,816
737,894,528
92,236,816
+
98
9604
1604
9604
8
-45,177,216
92,236, 816
12
124, 237,344
92,136, 816
11, 294, 304
92,236,816
[76,832
67,765,824
92.736,816
4604
115,248
9604
48,020
4504
18 323 340
13,136,816
4,705, 360
2-235,816
461,124.080
72.26.816
Transcribed Image Text:© 198 STEP 1: Find A x B Exercise 5.प A = 1274 98 니 911 42 433 9a3 952 (4) (3) (4) - (40) (-1) ५ -9604 98X 98 23 3-14 9.3921932 913922931 + (-3) (0) (0) -(3) () () +/- 14=98 98 - 5 31 -14 STEP 3: Find A*1 = 98 (C) -1078 2) (₁ 98 1 १४ -98 798 X ( 48 ) (4+ * 44 ) (++ * ) X 98 98 98x 98 - 588 98% 98 -১। उप ) 11 -5/4-5 443 4 उन 11 -514 -51 4 1 311-2 14-51 -23 STEP 2: Find Cofactor of each element 98 4/3 -686 98 * = 9604 Xx98 -23 31 X 1 X> X 3 912 925 931 911921933 +013 - 024) 5 d= 48 +4+3 +8 -10 + 45= 98 1274 9604 -98 9604 1 1-14-6 14 - 9604 9604 8 12 13-11-7 -1 1 -1078 9604 १४ 9604 n -588 9604 = CM -686 9604 98 9604 9604 9604 " " A -1 Exercise 5.4 Step4 A1 (1) 1274 1604 -98 9604 -9604 9604 -391 -1078 4604 9604 48 9604 -588 9604 97,883,968 72,236,816 - 7,529,536 72,236,816 737,894,528 92,236,816 + 98 9604 1604 9604 8 -45,177,216 92,236, 816 12 124, 237,344 92,136, 816 11, 294, 304 92,236,816 [76,832 67,765,824 92.736,816 4604 115,248 9604 48,020 4504 18 323 340 13,136,816 4,705, 360 2-235,816 461,124.080 72.26.816
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,