6) Steam enters a turbine at a pressure P-2.0MPA, temperature T1=500°C and enthalpy hi=3062 kJ/kg with a velocity Vi=10 m/s. The steam leaves the turbine as a gas-liquid mixture at a pressure P2=101kPa, temperature T2-373 K, and enthalpy ha=2621 kJ/kg with a velocity of v2-50 m/s. Thermal energy is lost through the turbine walls at a rate of 5 kJ/hr. The elevation difference between the entrance and exit of the turbine can be neglected. Calculate the power output in units of kW if 4000 kg/hr of steam pass through the turbine. %3D 4ニ-13815/5ec Pi thz + 6. 2Xla メSo? 2K9.81 3062 x103 1389 10 + é 621 X1s*) !8א2 ll rel 1o0ox4.21 looo X 9.81 2.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
6) Steam enters a turbine at a pressure P-2.0MPA, temperature T1=500°C and enthalpy hi=3062 kJ/kg
with a velocity Vi=10 m/s. The steam leaves the turbine as a gas-liquid mixture at a pressure
P2=101kPa, temperature T2-373 K, and enthalpy ha=2621 kJ/kg with a velocity of v2-50 m/s.
Thermal energy is lost through the turbine walls at a rate of 5 kJ/hr. The elevation difference between
the entrance and exit of the turbine can be neglected.
Calculate the power output in units of kW if 4000 kg/hr of steam pass through the turbine.
%3D
4ニ-13815/5ec
Pi
thz +
6.
2Xla
メSo?
2K9.81
3062 x103
1389
10
+ é 621 X1s*)
!8א2
ll
rel 1o0ox4.21
looo X 9.81
2.
Transcribed Image Text:6) Steam enters a turbine at a pressure P-2.0MPA, temperature T1=500°C and enthalpy hi=3062 kJ/kg with a velocity Vi=10 m/s. The steam leaves the turbine as a gas-liquid mixture at a pressure P2=101kPa, temperature T2-373 K, and enthalpy ha=2621 kJ/kg with a velocity of v2-50 m/s. Thermal energy is lost through the turbine walls at a rate of 5 kJ/hr. The elevation difference between the entrance and exit of the turbine can be neglected. Calculate the power output in units of kW if 4000 kg/hr of steam pass through the turbine. %3D 4ニ-13815/5ec Pi thz + 6. 2Xla メSo? 2K9.81 3062 x103 1389 10 + é 621 X1s*) !8א2 ll rel 1o0ox4.21 looo X 9.81 2.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY