54. f(x) = x4 - 3x3 – x² – 12x - 20 part (a) all real %3D (Hint: One factor is x2 + 4.) OsEO Finding the Zeros of a Polynomial Function In Exercises 55-60, use the given zero to find all the zeros of the function. Function Zero 55. f(x) = x3 -x2 + 4x - 4 56. f(x) 2i $7-40, phing ros in ne all = 2x3 + 3x2 + 18x + 27 57. g(x) = x³ – 8x² + 25x - 26 58. g(x) = x3 + 9x² + 25x + 17 3i %3D 3 + 2i -4 + i 59. h(x) = x4 – 6x3 + 14x² – 18x + 9 %3D 1- /2i -2+ 3i 60. h(x) = x4 + x³ – 3x² – 13x + 14 Finding the Zeros of a Polynomial Function In Exercises 61-72, write the polynomial as the product of linear factors and list all the zeros of the function. 61. f(x) = x² + 36 ith 1 a 62. f(x) = x² + 49 63. h(x) = x² – 2x + 17 64. g(x) = x² + 10x + 17 nts 65. f(x) = x4 – 16 66. f(y) = y4 – 256 ny 67. f(z) = z2 - 2z + 2 %3D 68. h(x) = x3 - 3x2 + 4x - 2 69. g(x) = x3 - 3x2 + x + 5 70. f(x) = x³ – x² + x + 39 %3D 71. g(x) = x4 – 4x3 + 8x² - 16x + 16 %3D 72. h(x) = x4 + 6x3 + 10x2 + 6x + 9 A Finding the Zeros of a Polynomial Function In Exercises 73-78, find ali the zeros of the function. When there is an extended list of possible rational zeros, use a graphing utility to graph the function in order to disregard any of the possible rational zeros that are obviously not zeros of the function. 73. f(x) = x³ + 24x² + 214x + 740 5s2 + 5 562 12s – 263 41. f(x) = x³ – x² + 25x : 43. (x) = x4 - 6x³ + 14x² - 45. f(x) = 3x* - 17x + 25x² + 23x – 22 25 47. f(x) = 2x4 + 2x3 - 49. f(x) = x3 + x² - 2x + 12 51. (a) (x² + 4)(x² – 2) (c) (x + 2i)(x – 2i)(x + /2)(x – /2) 53. (a) (x² – 6)(x² – 2x + 3) (-2,0) 2x2 + 2x - 4 -8- (b) (x² + 4)(x + /2)* - /2 rst four 117. f(x) = x V6(x - /6) (x2 - 2x + 3) 119. The func (b) (x + f(4) = (e) (x + J6)(x - J6)(x - 1- 2i)(x – 1 + Jzi) , 121. f(x) = x 123. (a) x² + 57. 2,3 ± 2i 59. 1, 3, 1 ± 2i 55. ±2i, 1 61. (x + 6i)(x – 6i); ±6i 63. (x - 1- 4i)(x – 1 + 4i); 1 ± 4i 65. (x - 2)(x + 2)(x – 2i)(x + 2i); ±2, ±2i 67. (z -1+ i)(z-1- i); 1 ± i 69. (x + 1)(x – 2 + i)(x – 2 – i); – 1, 2 ± i 71. (x – 2)²(x + 2i)(x - 2i); 2, ±2i 73. -10, - 7 + 5i Section 2 1. rational 5. Domain f(x) → 7. Domair flx) → f(x) → ero of Signs 77. –2, -}, ±i 75. -,1 + 3 49 45 9. Vertica 79. One positive real zero, no negative real zeros - 1 Horizo 81. No positive real zeros, one negative real zero 11. Vertica 83. Two or no positive real zeros, two or no negative real zeros 83. Two or no positive real zeros, one negative real zero 3 Horizc 93. – 13. Vertic 3 49 4 87-89. Answers will vary. 91. 15. Vertic 95. ±2, ±5 97. ±1, Horize 4. 102. c ". d 100. a 103. (a) 17. (a) D (b) y- 101. b 15- (c) V H 9. 9- 2x (d) 15-2x (b) V(x) = x(9 – 2x)(15 - 2x) Domain: 0 < x < 2 (c) 125 100

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question

The first picture displays the question, 69, whereas the second picture is the answer key. How were the given answers achieved?

54. f(x) = x4 - 3x3 – x² – 12x - 20
part (a)
all real
%3D
(Hint: One factor is x2 + 4.)
OsEO
Finding the Zeros of a Polynomial
Function In Exercises 55-60, use the given
zero to find all the zeros of the function.
Function
Zero
55. f(x) = x3 -x2 + 4x - 4
56. f(x)
2i
$7-40,
phing
ros in
ne all
= 2x3 + 3x2 + 18x + 27
57. g(x) = x³ – 8x² + 25x - 26
58. g(x) = x3 + 9x² + 25x + 17
3i
%3D
3 + 2i
-4 + i
59. h(x) = x4 – 6x3 + 14x² – 18x + 9
%3D
1- /2i
-2+ 3i
60. h(x) = x4 + x³ – 3x² – 13x + 14
Finding the Zeros of a Polynomial
Function In Exercises 61-72, write the
polynomial as the product of linear factors
and list all the zeros of the function.
61. f(x) = x² + 36
ith
1 a
62. f(x) = x² + 49
63. h(x) = x² – 2x + 17
64. g(x) = x² + 10x + 17
nts
65. f(x) = x4 – 16
66. f(y) = y4 – 256
ny
67. f(z) = z2 - 2z + 2
%3D
68. h(x) = x3 - 3x2 + 4x - 2
69. g(x) = x3 - 3x2 + x + 5
70. f(x) = x³ – x² + x + 39
%3D
71. g(x) = x4 – 4x3 + 8x² - 16x + 16
%3D
72. h(x) = x4 + 6x3 + 10x2 + 6x + 9
A Finding the Zeros of a Polynomial Function In
Exercises 73-78, find ali the zeros of the function. When
there is an extended list of possible rational zeros, use
a graphing utility to graph the function in order to
disregard any of the possible rational zeros that are
obviously not zeros of the function.
73. f(x) = x³ + 24x² + 214x + 740
5s2 + 5
562
12s –
263
Transcribed Image Text:54. f(x) = x4 - 3x3 – x² – 12x - 20 part (a) all real %3D (Hint: One factor is x2 + 4.) OsEO Finding the Zeros of a Polynomial Function In Exercises 55-60, use the given zero to find all the zeros of the function. Function Zero 55. f(x) = x3 -x2 + 4x - 4 56. f(x) 2i $7-40, phing ros in ne all = 2x3 + 3x2 + 18x + 27 57. g(x) = x³ – 8x² + 25x - 26 58. g(x) = x3 + 9x² + 25x + 17 3i %3D 3 + 2i -4 + i 59. h(x) = x4 – 6x3 + 14x² – 18x + 9 %3D 1- /2i -2+ 3i 60. h(x) = x4 + x³ – 3x² – 13x + 14 Finding the Zeros of a Polynomial Function In Exercises 61-72, write the polynomial as the product of linear factors and list all the zeros of the function. 61. f(x) = x² + 36 ith 1 a 62. f(x) = x² + 49 63. h(x) = x² – 2x + 17 64. g(x) = x² + 10x + 17 nts 65. f(x) = x4 – 16 66. f(y) = y4 – 256 ny 67. f(z) = z2 - 2z + 2 %3D 68. h(x) = x3 - 3x2 + 4x - 2 69. g(x) = x3 - 3x2 + x + 5 70. f(x) = x³ – x² + x + 39 %3D 71. g(x) = x4 – 4x3 + 8x² - 16x + 16 %3D 72. h(x) = x4 + 6x3 + 10x2 + 6x + 9 A Finding the Zeros of a Polynomial Function In Exercises 73-78, find ali the zeros of the function. When there is an extended list of possible rational zeros, use a graphing utility to graph the function in order to disregard any of the possible rational zeros that are obviously not zeros of the function. 73. f(x) = x³ + 24x² + 214x + 740 5s2 + 5 562 12s – 263
41. f(x) = x³ – x² + 25x :
43. (x) = x4 - 6x³ + 14x² -
45. f(x) = 3x* - 17x + 25x² + 23x – 22
25
47. f(x) = 2x4 + 2x3 -
49. f(x) = x3 + x² - 2x + 12
51. (a) (x² + 4)(x² – 2)
(c) (x + 2i)(x – 2i)(x + /2)(x – /2)
53. (a) (x² – 6)(x² – 2x + 3)
(-2,0)
2x2 + 2x - 4
-8-
(b) (x² + 4)(x + /2)* - /2
rst four
117. f(x) = x
V6(x -
/6) (x2 - 2x + 3)
119. The func
(b) (x +
f(4) =
(e) (x + J6)(x - J6)(x - 1- 2i)(x – 1 + Jzi)
,
121. f(x) = x
123. (a) x² +
57. 2,3 ± 2i
59. 1, 3, 1 ± 2i
55. ±2i, 1
61. (x + 6i)(x – 6i); ±6i
63. (x - 1- 4i)(x – 1 + 4i); 1 ± 4i
65. (x - 2)(x + 2)(x – 2i)(x + 2i); ±2, ±2i
67. (z -1+ i)(z-1- i); 1 ± i
69. (x + 1)(x – 2 + i)(x – 2 – i); – 1, 2 ± i
71. (x – 2)²(x + 2i)(x - 2i); 2, ±2i
73. -10, - 7 + 5i
Section 2
1. rational
5. Domain
f(x) →
7. Domair
flx) →
f(x) →
ero
of Signs
77. –2, -}, ±i
75. -,1 +
3
49
45
9. Vertica
79. One positive real zero, no negative real zeros
- 1
Horizo
81. No positive real zeros, one negative real zero
11. Vertica
83. Two or no positive real zeros, two or no negative real zeros
83. Two or no positive real zeros, one negative real zero
3
Horizc
93. –
13. Vertic
3
49
4
87-89. Answers will vary.
91.
15. Vertic
95. ±2, ±5
97. ±1,
Horize
4.
102. c
". d 100. a
103. (a)
17. (a) D
(b) y-
101. b
15-
(c) V
H
9.
9- 2x
(d)
15-2x
(b) V(x) = x(9 – 2x)(15 - 2x)
Domain: 0 < x < 2
(c)
125
100
Transcribed Image Text:41. f(x) = x³ – x² + 25x : 43. (x) = x4 - 6x³ + 14x² - 45. f(x) = 3x* - 17x + 25x² + 23x – 22 25 47. f(x) = 2x4 + 2x3 - 49. f(x) = x3 + x² - 2x + 12 51. (a) (x² + 4)(x² – 2) (c) (x + 2i)(x – 2i)(x + /2)(x – /2) 53. (a) (x² – 6)(x² – 2x + 3) (-2,0) 2x2 + 2x - 4 -8- (b) (x² + 4)(x + /2)* - /2 rst four 117. f(x) = x V6(x - /6) (x2 - 2x + 3) 119. The func (b) (x + f(4) = (e) (x + J6)(x - J6)(x - 1- 2i)(x – 1 + Jzi) , 121. f(x) = x 123. (a) x² + 57. 2,3 ± 2i 59. 1, 3, 1 ± 2i 55. ±2i, 1 61. (x + 6i)(x – 6i); ±6i 63. (x - 1- 4i)(x – 1 + 4i); 1 ± 4i 65. (x - 2)(x + 2)(x – 2i)(x + 2i); ±2, ±2i 67. (z -1+ i)(z-1- i); 1 ± i 69. (x + 1)(x – 2 + i)(x – 2 – i); – 1, 2 ± i 71. (x – 2)²(x + 2i)(x - 2i); 2, ±2i 73. -10, - 7 + 5i Section 2 1. rational 5. Domain f(x) → 7. Domair flx) → f(x) → ero of Signs 77. –2, -}, ±i 75. -,1 + 3 49 45 9. Vertica 79. One positive real zero, no negative real zeros - 1 Horizo 81. No positive real zeros, one negative real zero 11. Vertica 83. Two or no positive real zeros, two or no negative real zeros 83. Two or no positive real zeros, one negative real zero 3 Horizc 93. – 13. Vertic 3 49 4 87-89. Answers will vary. 91. 15. Vertic 95. ±2, ±5 97. ±1, Horize 4. 102. c ". d 100. a 103. (a) 17. (a) D (b) y- 101. b 15- (c) V H 9. 9- 2x (d) 15-2x (b) V(x) = x(9 – 2x)(15 - 2x) Domain: 0 < x < 2 (c) 125 100
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Inequality
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education