5.5.2 Еxample B Consider the equation z(k + 1, l + 1) + 2z(k, e) = k2 + l +1, (5.170) or (E, E2 + 2)z(k, l) = k² + l+ 1. (5.171) The particular solution is Zp(k, l) 1 (k² +l+1) E, E2 + 2 1 1 -(k² +l+1) 31+1/3(A1 + A2 + A¡A2) = 1/3[1-1/3(A1 + A2 + A¡A2) +1/o(△? + △2 + Δ우스2 + 2△1△2 + 2A{△2 +2Δ1Δ2)+.](k2 + l+ 1) = 1/27(9k? – 6k + 9l + 5). (5.172) The homogeneous equation (E1, E2 + 2)ž½(k, l) = 0 (5.173) has the solution zh(k, l) = (-2)* f (e – k). (5.174) Therefore, the general solution of equation (5.170) is Zh(k, l) = zh(k, e) + zp(k, l) (5.175) = (-2)* f(l – k) + /27(9k² – 6k + 9l + 5).
5.5.2 Еxample B Consider the equation z(k + 1, l + 1) + 2z(k, e) = k2 + l +1, (5.170) or (E, E2 + 2)z(k, l) = k² + l+ 1. (5.171) The particular solution is Zp(k, l) 1 (k² +l+1) E, E2 + 2 1 1 -(k² +l+1) 31+1/3(A1 + A2 + A¡A2) = 1/3[1-1/3(A1 + A2 + A¡A2) +1/o(△? + △2 + Δ우스2 + 2△1△2 + 2A{△2 +2Δ1Δ2)+.](k2 + l+ 1) = 1/27(9k? – 6k + 9l + 5). (5.172) The homogeneous equation (E1, E2 + 2)ž½(k, l) = 0 (5.173) has the solution zh(k, l) = (-2)* f (e – k). (5.174) Therefore, the general solution of equation (5.170) is Zh(k, l) = zh(k, e) + zp(k, l) (5.175) = (-2)* f(l – k) + /27(9k² – 6k + 9l + 5).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Explain the determine blue
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,