Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A compression test is performed on a 2” diameter by 5” long bar of an unknown metal. At the end of the compression test, the bar has a height of 3.5 inches. The strength coefficient (K) and the work hardening coefficient (n ) are 250 MPa and 0.4, respectively. State all assumptions needed to work the problem. a) Calculate the final diameter of the bar in inches. b) Calculate the flow stress in MPa when the length of the bar is 4”.arrow_forwardNonearrow_forwardEstimate the maximum bending force requires for a 3 mm thick and 300 mm long Ti-6Al-4V titanium alloy sheet (Sy=925 MPa, S_UT = 1000 MPa, and E=110 GPa), annealed and quenched at 25 oC, in a wiping die with a width of 150 mm. Hint: recall that k-factor for a wiping die varies from 0.3-0.34. A)5.3 kN B)5.7 kN C)633 kN D)None of the abovearrow_forward
- I think the answer is 0Mpa , Looking for Explanation.arrow_forwardfind the die shape factor in an extrusion process, if the diameter of the extruded cross-section is =15 cm and the diameter of the circle of the same area as the extruded shape is = 10 cmarrow_forwardCalculate (1) die pressure distribution and (2) forging force for plane strain forging (open die forging). Assume yield strength of the material is Y, and yielding criterion is von Mises. ho 2Lo h Forged to 2L xdx L 'x+value Note: Assume Zo Constant Plane strain Die pressure distribution h L L Die pressure distribution h MATERIAL L dx -(-1) Friction Hill Y L When 0; =Y P=Y' = Calculate forging force X L dF elemental volume Average pressurearrow_forward
- A hot/cold rolling setup is shown right. The operation first hot rolls a 3/8” thick plate, 12” wide (w), of6061 Aluminum, to an intermediate thickness, then finally through cold rolling, down to 1/4” thick plate.The friction factor μ is assumed to be constant at 0.15 for the hot roll, 0.12 for the cold rolling stage. Thefirst set of rolls operate at 50 RPM. Also ignore any width increase during rolling. CW=13% or .13 What is the plate thickness (mm) prior to the last rolls, t1, if the last set of rollers perform cold work reduction listed below at .13 or 13% Note that 9.52 mm is equal to 3/8 of an inch.arrow_forwardA compound die will be used to blank and punch a large rectangle (90x150mm blank dimensions) out of 6061ST aluminum alloy sheet stock 3.5 mm thick. The diameter of inside hole is 25 mm. The aluminum sheet metal has a tensile strength 310 MPa. Determine the minimum tonnage press (force) to perform the blanking and punching operation (1) assume that blanking and punching occur simultaneously and (2) assume that punching occurs first, then blanking, Take: Ac-0.06arrow_forwardA small connecting rod is forged from AISI 1015 steel at 1200oC. Calculate the forging force in a mechanical press at a speed of 200 mm / s when the die comes into contact with the part. The volume of the connecting rod is estimated to be 28680 mm3, and 20% of the starting material is expected to burn off as flash (flash). In the final form the projected area is 3500 mm2 without flash. The width of the flash is 7.6mm around 300mm in circumference.arrow_forward
- Using average pressure formulas and ignoring barrelling, plot the force (vertical axis) versus reduction-in-height (horizontal axis is *100) curve in open-die forging of a cylindrical, annealed copper specimen whose height is 1 in and diameter is 1 in, from reduction-in-height of 0% to 75%, when the friction between the flat dies and the specimen ho-h ho is a) μ = 0 b) μ c) μ = 0.1 0.2arrow_forwardAssume you are bending a 3/16” thick rolled plate of Al 6061-T6 at a 90-degree angle. The initial bend radius (after the part is bent in the press brake) is 0.35”. Look up material properties on the Internet a) What is the final bend radius after the part has “relaxed”?b) Is it within the 2-4% rule of thumb?Show your work, and write down any values you choose to reference/use.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY