5. Solve the following linear system: d..X dit with the initial condition - [83] X (0) = [3] 2 X

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
PLEASE ANSWER ASAP
Title: Solving Linear Systems of Differential Equations

### Problem Statement

Solve the following linear system:

\[ \frac{d\mathbf{X}}{dt} = \begin{bmatrix} 3 & -2 \\ 0 & 3 \end{bmatrix} \mathbf{X} \]

with the initial condition

\[ \mathbf{X}(0) = \begin{bmatrix} -3 \\ 2 \end{bmatrix} \]

### Explanation

This problem involves solving a system of differential equations. The matrix equation provided can be written in the form of:

\[ \frac{d\mathbf{X}}{dt} = A\mathbf{X} \]

where

\[ A = \begin{bmatrix} 3 & -2 \\ 0 & 3 \end{bmatrix}, \]
\[ \mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}. \]

### Steps to Solve:

1. **Find the Eigenvalues of \(A\):**

   The eigenvalues, \(\lambda\), are found from the characteristic equation:

   \[
   \text{det}(A - \lambda I) = 0
   \]

   For the given matrix:

   \[
   A - \lambda I = \begin{bmatrix} 3 - \lambda & -2 \\ 0 & 3 - \lambda \end{bmatrix}
   \]

   The characteristic polynomial is:

   \[
   (3 - \lambda)^2 = 0
   \]

   Solving this gives:

   \[
   \lambda = 3 \quad \text{(with multiplicity 2)}
   \]

2. **Find the Eigenvectors:**

   For \(\lambda = 3\), solve:

   \[
   (A - 3I)\mathbf{v} = \mathbf{0}
   \]

   This simplifies to:

   \[
   \begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
   \]

   From this, \(v_2\) can be any arbitrary value, and \(v_1
Transcribed Image Text:Title: Solving Linear Systems of Differential Equations ### Problem Statement Solve the following linear system: \[ \frac{d\mathbf{X}}{dt} = \begin{bmatrix} 3 & -2 \\ 0 & 3 \end{bmatrix} \mathbf{X} \] with the initial condition \[ \mathbf{X}(0) = \begin{bmatrix} -3 \\ 2 \end{bmatrix} \] ### Explanation This problem involves solving a system of differential equations. The matrix equation provided can be written in the form of: \[ \frac{d\mathbf{X}}{dt} = A\mathbf{X} \] where \[ A = \begin{bmatrix} 3 & -2 \\ 0 & 3 \end{bmatrix}, \] \[ \mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}. \] ### Steps to Solve: 1. **Find the Eigenvalues of \(A\):** The eigenvalues, \(\lambda\), are found from the characteristic equation: \[ \text{det}(A - \lambda I) = 0 \] For the given matrix: \[ A - \lambda I = \begin{bmatrix} 3 - \lambda & -2 \\ 0 & 3 - \lambda \end{bmatrix} \] The characteristic polynomial is: \[ (3 - \lambda)^2 = 0 \] Solving this gives: \[ \lambda = 3 \quad \text{(with multiplicity 2)} \] 2. **Find the Eigenvectors:** For \(\lambda = 3\), solve: \[ (A - 3I)\mathbf{v} = \mathbf{0} \] This simplifies to: \[ \begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \] From this, \(v_2\) can be any arbitrary value, and \(v_1
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,