Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

bartleby

Concept explainers

Topic Video
Question
**Problem 5**: Find \(\mathcal{L}\left\{ e^{7t} \cos^2 t \right\}\)

This problem requires finding the Laplace transform of the given function \( e^{7t} \cos^2 t \). The Laplace transform is an integral transform used to convert a function of a real variable \( t \) (often time) to a function of a complex variable \( s \) (complex frequency).

### Steps to Solve the Problem:

1. **Express the Trigonometric Function with Double Angle Formulas**:
   Use the identity for the double angle of cosine:
   \[
   \cos^2 t = \frac{1 + \cos(2t)}{2}
   \]
   which simplifies the given function:
   \[
   e^{7t} \cos^2 t = e^{7t} \cdot \frac{1 + \cos(2t)}{2}
   \]

2. **Rewrite the Function**:
   Rewrite the function to a more manageable form:
   \[
   e^{7t} \cos^2 t = \frac{1}{2} e^{7t} + \frac{1}{2} e^{7t} \cos(2t)
   \]

3. **Apply Linearity of the Laplace Transform**:
   The Laplace transform \(\mathcal{L}\) is linear, so apply it to each term separately:
   \[
   \mathcal{L}\left\{ \frac{1}{2} e^{7t} + \frac{1}{2} e^{7t} \cos(2t) \right\} = \frac{1}{2} \mathcal{L}\left\{ e^{7t} \right\} + \frac{1}{2} \mathcal{L}\left\{ e^{7t} \cos(2t) \right\}
   \]

4. **Find the Laplace Transforms**:

   - For \(\mathcal{L}\{ e^{7t} \}\):
     \[
     \mathcal{L}\left\{ e^{7t} \right\} = \frac{1}{s - 7}, \quad \text{for } s > 7
     \]

   - For \
expand button
Transcribed Image Text:**Problem 5**: Find \(\mathcal{L}\left\{ e^{7t} \cos^2 t \right\}\) This problem requires finding the Laplace transform of the given function \( e^{7t} \cos^2 t \). The Laplace transform is an integral transform used to convert a function of a real variable \( t \) (often time) to a function of a complex variable \( s \) (complex frequency). ### Steps to Solve the Problem: 1. **Express the Trigonometric Function with Double Angle Formulas**: Use the identity for the double angle of cosine: \[ \cos^2 t = \frac{1 + \cos(2t)}{2} \] which simplifies the given function: \[ e^{7t} \cos^2 t = e^{7t} \cdot \frac{1 + \cos(2t)}{2} \] 2. **Rewrite the Function**: Rewrite the function to a more manageable form: \[ e^{7t} \cos^2 t = \frac{1}{2} e^{7t} + \frac{1}{2} e^{7t} \cos(2t) \] 3. **Apply Linearity of the Laplace Transform**: The Laplace transform \(\mathcal{L}\) is linear, so apply it to each term separately: \[ \mathcal{L}\left\{ \frac{1}{2} e^{7t} + \frac{1}{2} e^{7t} \cos(2t) \right\} = \frac{1}{2} \mathcal{L}\left\{ e^{7t} \right\} + \frac{1}{2} \mathcal{L}\left\{ e^{7t} \cos(2t) \right\} \] 4. **Find the Laplace Transforms**: - For \(\mathcal{L}\{ e^{7t} \}\): \[ \mathcal{L}\left\{ e^{7t} \right\} = \frac{1}{s - 7}, \quad \text{for } s > 7 \] - For \
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,