-5 4 and v = 7 Compute the quantity using the vectors u = 1 u•v V V•v u•v v = (Simplify your answers.) V•v ロロ

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Title: Computing Matrix Quantities Using Given Vectors**

**Objective:**
To compute a specified quantity using given vectors and represent it in matrix form.

**Given:**
Vectors \( \mathbf{u} \) and \( \mathbf{v} \) are provided as follows:
\[ \mathbf{u} = \begin{bmatrix} -5 \\ 1 \end{bmatrix} \]
\[ \mathbf{v} = \begin{bmatrix} 4 \\ 7 \end{bmatrix} \]

**Task:**
Compute the quantity:

\[ \frac{\mathbf{u \cdot v}}{\mathbf{v \cdot v}} \mathbf{v} \]

**Procedure:**
1. **Compute \( \mathbf{u \cdot v} \) (Dot Product of \( \mathbf{u} \) and \( \mathbf{v} \)):**
   \[
   \mathbf{u \cdot v} = (-5 \cdot 4) + (1 \cdot 7) = -20 + 7 = -13
   \]

2. **Compute \( \mathbf{v \cdot v} \) (Dot Product of \( \mathbf{v} \) with itself):**
   \[
   \mathbf{v \cdot v} = (4 \cdot 4) + (7 \cdot 7) = 16 + 49 = 65
   \]

3. **Divide the dot product \( \mathbf{u \cdot v} \) by \( \mathbf{v \cdot v} \):**
   \[
   \frac{\mathbf{u \cdot v}}{\mathbf{v \cdot v}} = \frac{-13}{65} = -\frac{13}{65} = -\frac{1}{5}
   \]

4. **Multiply the result by the vector \( \mathbf{v} \):**
   \[
   \left( -\frac{1}{5} \right) \mathbf{v} = -\frac{1}{5} \begin{bmatrix} 4 \\ 7 \end{bmatrix} = \begin{bmatrix} -\frac{4}{5} \\ -\frac{7}{5} \end{bmatrix}
   \]

**Result:**
The computed
Transcribed Image Text:**Title: Computing Matrix Quantities Using Given Vectors** **Objective:** To compute a specified quantity using given vectors and represent it in matrix form. **Given:** Vectors \( \mathbf{u} \) and \( \mathbf{v} \) are provided as follows: \[ \mathbf{u} = \begin{bmatrix} -5 \\ 1 \end{bmatrix} \] \[ \mathbf{v} = \begin{bmatrix} 4 \\ 7 \end{bmatrix} \] **Task:** Compute the quantity: \[ \frac{\mathbf{u \cdot v}}{\mathbf{v \cdot v}} \mathbf{v} \] **Procedure:** 1. **Compute \( \mathbf{u \cdot v} \) (Dot Product of \( \mathbf{u} \) and \( \mathbf{v} \)):** \[ \mathbf{u \cdot v} = (-5 \cdot 4) + (1 \cdot 7) = -20 + 7 = -13 \] 2. **Compute \( \mathbf{v \cdot v} \) (Dot Product of \( \mathbf{v} \) with itself):** \[ \mathbf{v \cdot v} = (4 \cdot 4) + (7 \cdot 7) = 16 + 49 = 65 \] 3. **Divide the dot product \( \mathbf{u \cdot v} \) by \( \mathbf{v \cdot v} \):** \[ \frac{\mathbf{u \cdot v}}{\mathbf{v \cdot v}} = \frac{-13}{65} = -\frac{13}{65} = -\frac{1}{5} \] 4. **Multiply the result by the vector \( \mathbf{v} \):** \[ \left( -\frac{1}{5} \right) \mathbf{v} = -\frac{1}{5} \begin{bmatrix} 4 \\ 7 \end{bmatrix} = \begin{bmatrix} -\frac{4}{5} \\ -\frac{7}{5} \end{bmatrix} \] **Result:** The computed
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Vector Addition and Scalar Multiplication
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,