Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

bartleby

Concept explainers

Question
**Problem:**

Find the derivative of \(\ln\left(\frac{(4x + 12)^{10}}{x^8 + 9}\right)\).

**Solution:**

We need to find the derivative of the natural logarithm of the function:

\[ f(x) = \ln\left(\frac{(4x + 12)^{10}}{x^8 + 9}\right) \]

To make the differentiation easier, we can use the properties of logarithms to simplify the expression inside the logarithm:

\[ \ln\left(\frac{(4x + 12)^{10}}{x^8 + 9}\right) = \ln((4x + 12)^{10}) - \ln(x^8 + 9) \]

Using the property of logarithms \(\ln(a^b) = b \ln(a)\), we can further simplify:

\[ \ln((4x + 12)^{10}) - \ln(x^8 + 9) = 10 \ln(4x + 12) - \ln(x^8 + 9) \]

Now we can take the derivative of each term separately with respect to \(x\).

1. Derivative of \(10 \ln(4x + 12)\):

\[ \frac{d}{dx} \left[ 10 \ln(4x + 12) \right] = 10 \cdot \frac{1}{4x + 12} \cdot \frac{d}{dx}(4x + 12) = 10 \cdot \frac{1}{4x + 12} \cdot 4 = \frac{40}{4x + 12} \]

2. Derivative of \(\ln(x^8 + 9)\):

\[ \frac{d}{dx} \left[ \ln(x^8 + 9) \right] = \frac{1}{x^8 + 9} \cdot \frac{d}{dx}(x^8 + 9) = \frac{1}{x^8 + 9} \cdot 8x^7 = \frac{8x^7}{x^8 + 9} \]

Combining both results, we get the derivative of \(f(x)\):

\[ f'(x) = \frac{40}{
expand button
Transcribed Image Text:**Problem:** Find the derivative of \(\ln\left(\frac{(4x + 12)^{10}}{x^8 + 9}\right)\). **Solution:** We need to find the derivative of the natural logarithm of the function: \[ f(x) = \ln\left(\frac{(4x + 12)^{10}}{x^8 + 9}\right) \] To make the differentiation easier, we can use the properties of logarithms to simplify the expression inside the logarithm: \[ \ln\left(\frac{(4x + 12)^{10}}{x^8 + 9}\right) = \ln((4x + 12)^{10}) - \ln(x^8 + 9) \] Using the property of logarithms \(\ln(a^b) = b \ln(a)\), we can further simplify: \[ \ln((4x + 12)^{10}) - \ln(x^8 + 9) = 10 \ln(4x + 12) - \ln(x^8 + 9) \] Now we can take the derivative of each term separately with respect to \(x\). 1. Derivative of \(10 \ln(4x + 12)\): \[ \frac{d}{dx} \left[ 10 \ln(4x + 12) \right] = 10 \cdot \frac{1}{4x + 12} \cdot \frac{d}{dx}(4x + 12) = 10 \cdot \frac{1}{4x + 12} \cdot 4 = \frac{40}{4x + 12} \] 2. Derivative of \(\ln(x^8 + 9)\): \[ \frac{d}{dx} \left[ \ln(x^8 + 9) \right] = \frac{1}{x^8 + 9} \cdot \frac{d}{dx}(x^8 + 9) = \frac{1}{x^8 + 9} \cdot 8x^7 = \frac{8x^7}{x^8 + 9} \] Combining both results, we get the derivative of \(f(x)\): \[ f'(x) = \frac{40}{
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,