Question

Transcribed Image Text:4.7. Let y(x, t) be the wave function of a spinless particle corresponding to a plane
wave in three dimensions. Show that (x.-) is the wave function for the plane
wave with the momentum direction reversed.
b. Let x(n) be the two-component eigenspinor of an with eigenvalue +1. Using
the explicit form of x(A) (in terms of the polar and azimuthal angles ß and y that
characterize A) verify that -io₂x() is the two-component eigenspinor with the
spin direction reversed.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps

Knowledge Booster
Similar questions
- 40. The first excited state of the harmonic oscillator has a wave function of the form y(x) = Axe-ax². (a) Follow thearrow_forwardplease answer c) only 2. a) A spinless particle, mass m, is confined to a two-dimensional box of length L. The stationary Schrödinger equation is - +a) v(x, y) = Ev(x, y), for 0 < r, y < L. The bound- ary conditions on ý are that it vanishes at the edges of the box. Verify that solutions are given by 2 v(1, y) sin L where n., ny = 1,2..., and find the corresponding energy. Let L and m be such that h'n?/(2mL²) = 1 eV. How many states of the system have energies between 9 eV and 24 eV? b) We now consider a macroscopic box (L of order cm) so that h'n?/(2mL?) ~ 10-20 eV. If we define the wave vector k as ("", ""), show that the density of states g(k), defined such that the number of states with |k| between k and k +dk is given by g(k)dk, is Ak 9(k) = 27 c) Use the expression for g(k) to show that at room temperature the partition function for the translational energy of a particle in a macroscopic 2-dimensional box is Z1 = Aoq, where 2/3 oq = ng = mk„T/2nh?. Hence show that the average…arrow_forwardConsider a particle of mass m which can move freely along the x axis anywhere from x=-a/2 to x=a/2, but which is strictly prohibited from being found outside this region (technically this is the infinite square well potential). 1. Verify that the attached wavefunction is a solution of the Schrodinger's equation. Consider V=0. 2. Deduce the value of the energy E. 3. Verify the uncertainty principlearrow_forward
- Question A2 Consider an infinite square well of width L, with V = 0 in the region -L/2 < x < L/2 and V → ∞ everywhere else. For this system: a) Write down and solve the time-independent Schrödinger equation for & inside the well, where -L/2< xarrow_forwardConsider the sheet formed by the intersection of the curves: x = 0, x = 4, y = 0, y = 3 [=] cm, with a variable density of mass per unit area ρ(x,y) = xy [=] g/cm2 . Write and evaluate multiple integrals to calculate the following: a. The area of the sheet [=] cm2 . b. The mass of the sheet [=] g. c. The shell moments about the x & y axes (Mx & My) [=] g∙cm. d. The position of the center of mass of the sheet ( , ) [=] cm.arrow_forward
arrow_back_ios
arrow_forward_ios