4.32 (a) Calculate the enthalpy of formation of the hypothetical compound KF, assuming a CaF, structure. Use the Born-Mayer equation to obtain the lattice enthalpy and estimate the radius of K2- by extrapolation of trends in Table 1.4 and Resource section 1. Ionization enthalpies and electron gain enthalpies are given in Tables 1.5 and 1.6. (b) What factor prevents the formation of this compound despite the favourable lattice enthalpy?

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
icon
Concept explainers
Question

I need help with this question that is attached. 

Table 1.4 gave the ionic radii in pm. For k+ it was 138(6), 151(8),159(10) and for f- it was 128(2), 132(4), 133(6).

Table 1. 5 gave ionization energies in kj/mol. For k they were 419, 3051 and 4410. For f it was 1681,3375, and 6050.

Table 1.6 gave electron affinities in kj/mol and for k it was 48 and for f it was 328.

I've also attached the resource table 

4.32 (a) Calculate the enthalpy of formation of the hypothetical
compound KF, assuming a CaF, structure. Use the Born-Mayer
equation to obtain the lattice enthalpy and estimate the radius of
K²- by extrapolation of trends in Table 1.4 and Resource section 1.
Ionization enthalpies and electron gain enthalpies are given in
Tables 1.5 and 1.6. (b) What factor prevents the formation of this
pre
2
4.
in
2+
in
W
compound despite the favourable lattice enthalpy?
4.
11
1:
Transcribed Image Text:4.32 (a) Calculate the enthalpy of formation of the hypothetical compound KF, assuming a CaF, structure. Use the Born-Mayer equation to obtain the lattice enthalpy and estimate the radius of K²- by extrapolation of trends in Table 1.4 and Resource section 1. Ionization enthalpies and electron gain enthalpies are given in Tables 1.5 and 1.6. (b) What factor prevents the formation of this pre 2 4. in 2+ in W compound despite the favourable lattice enthalpy? 4. 11 1:
Selected ionic radii
2) () 01
Jonic radii are given (in picometres, pm) for the most com-
mon oxidation states and coordination geometries. The
coordination number is given in parentheses, (4) refers to
retrahedral and (4SP) refers to square planar. All d-block
values for high-spin are quoted. Most data are taken from
R.D. Shannon, Acta Crystallogr., 1976, A32, 751, where
values for other coordination geometries can be found.
Where Shannon values are not available, Pauling ionic radii
are quoted and are indicated by *.
low-spin unless labelled with , in which case
2
1.
3.
4.
Be2+
+!7
59 (4)
8.
10 11
6.
12
27 (4)
13
14
15
17
18
-EN
11 (4) 15 (4) 146 (4) 138 (4) 131 (4) 112
76 (6)
45 (6)
Net
92 (8)
27 (6) 16 (6)
140 (6) 133 (6)
142 (8)
Mg2+
+eN
Na*
8 (e)
57 (4)
(9) 96
Si4+
-1)
39 (4) 26 (4) 17 (4) 184 (6) 181 (6) 154
Art
72 (6)
+sd
102 (6)
118 (8)
89 (8)
53 (6) 40 (6) 38 (6)
+ed
+9S
44 (6) 12 (4) 8 (4)
29 (6) 27 (6)
180 (9)
-ed
Ca2+
Sc3+
192 (4) 37 (6)
+9d)
Mn7+
Fe6+
Co4+
100 (6) 75 (6) 42 (4) 36 (4) 26 (4) 25 (4) 25 (4) 40 (4) 48 (6) 54 (6) 60 (4) 47 (4) 39 (4) 34 (4) 198 (6) 196 (6) 169
+sA
Zn2+
++!N
Ga3+
Ge+
As5+
Se?-
137 (4)
138(6)
112 (8) 87 (8) 61 (6) 54 (6) 44 (6) 46 (6)
53 (6)*
74 (6) 62 (6) 53 (6) 46 (6)
151 (8)
74 (8)
3+
(8) 06
Fe4+
Co3+
Ni3+
Cu²+
Ge2+
As3+
Se&+
+s)
+9UW
67 (6) 58 (6) 49 (6)
26 (4) 58 (6) 55 (6) 56 (6) 57 (4)
73 (6) 58 (6) 28 (4) 39 (6)
73 (6)
(9)
Set+
(8) 7
Ti2+
Mn5+
Fe3+
Co2+
Ni2+ Cu*
86 (6) 64 (6) 41 (4) 33 (4) 49 (4)* 58 (4)* 55 (4) 60 (4)
55 (6) 63 (6) 55 (6) 65 (6) 69 (6) 77 (6)
(9) OS
02(0)
102(8)
78 (8)* 90 (8)
V2+
Mn4+
Fe2+
79 (6) 62 (6) 37 (4) 63 (4)*
53 (6) 61 (6)
92 (8)*
(e)
Cr2+
Mn3+
73 (6) 65 (6)
Mn2+
100 (0)
1070)
67 (6)
96 (8)
Sn Sb* Te
Pd+
Ag³+ Cd+ In3+
118 (6) 90 (6) 59 (4) 48 (4) 41 (4) 37 (4) 36 (4) 55 (6) 62 (6) 67 (4) 78 (4) 62 (4) 55 (4) 60 (6) 43 (4) 220 (6) 190
126 (8) 102 (8) 72 (6) 64 (6) 59 (6) 56 (6)
RhS+
Rb*
Sr2+
+s9N
Mo6+ Tc+
Tc7+
Ru8+
152 (6)
56 (6)
75 (6) 95 (6) 80 (6) 69 (6)
110 (8) 92 (8) 81 (8)
160 (8)
84 (8) 74 (8)
Transcribed Image Text:Selected ionic radii 2) () 01 Jonic radii are given (in picometres, pm) for the most com- mon oxidation states and coordination geometries. The coordination number is given in parentheses, (4) refers to retrahedral and (4SP) refers to square planar. All d-block values for high-spin are quoted. Most data are taken from R.D. Shannon, Acta Crystallogr., 1976, A32, 751, where values for other coordination geometries can be found. Where Shannon values are not available, Pauling ionic radii are quoted and are indicated by *. low-spin unless labelled with , in which case 2 1. 3. 4. Be2+ +!7 59 (4) 8. 10 11 6. 12 27 (4) 13 14 15 17 18 -EN 11 (4) 15 (4) 146 (4) 138 (4) 131 (4) 112 76 (6) 45 (6) Net 92 (8) 27 (6) 16 (6) 140 (6) 133 (6) 142 (8) Mg2+ +eN Na* 8 (e) 57 (4) (9) 96 Si4+ -1) 39 (4) 26 (4) 17 (4) 184 (6) 181 (6) 154 Art 72 (6) +sd 102 (6) 118 (8) 89 (8) 53 (6) 40 (6) 38 (6) +ed +9S 44 (6) 12 (4) 8 (4) 29 (6) 27 (6) 180 (9) -ed Ca2+ Sc3+ 192 (4) 37 (6) +9d) Mn7+ Fe6+ Co4+ 100 (6) 75 (6) 42 (4) 36 (4) 26 (4) 25 (4) 25 (4) 40 (4) 48 (6) 54 (6) 60 (4) 47 (4) 39 (4) 34 (4) 198 (6) 196 (6) 169 +sA Zn2+ ++!N Ga3+ Ge+ As5+ Se?- 137 (4) 138(6) 112 (8) 87 (8) 61 (6) 54 (6) 44 (6) 46 (6) 53 (6)* 74 (6) 62 (6) 53 (6) 46 (6) 151 (8) 74 (8) 3+ (8) 06 Fe4+ Co3+ Ni3+ Cu²+ Ge2+ As3+ Se&+ +s) +9UW 67 (6) 58 (6) 49 (6) 26 (4) 58 (6) 55 (6) 56 (6) 57 (4) 73 (6) 58 (6) 28 (4) 39 (6) 73 (6) (9) Set+ (8) 7 Ti2+ Mn5+ Fe3+ Co2+ Ni2+ Cu* 86 (6) 64 (6) 41 (4) 33 (4) 49 (4)* 58 (4)* 55 (4) 60 (4) 55 (6) 63 (6) 55 (6) 65 (6) 69 (6) 77 (6) (9) OS 02(0) 102(8) 78 (8)* 90 (8) V2+ Mn4+ Fe2+ 79 (6) 62 (6) 37 (4) 63 (4)* 53 (6) 61 (6) 92 (8)* (e) Cr2+ Mn3+ 73 (6) 65 (6) Mn2+ 100 (0) 1070) 67 (6) 96 (8) Sn Sb* Te Pd+ Ag³+ Cd+ In3+ 118 (6) 90 (6) 59 (4) 48 (4) 41 (4) 37 (4) 36 (4) 55 (6) 62 (6) 67 (4) 78 (4) 62 (4) 55 (4) 60 (6) 43 (4) 220 (6) 190 126 (8) 102 (8) 72 (6) 64 (6) 59 (6) 56 (6) RhS+ Rb* Sr2+ +s9N Mo6+ Tc+ Tc7+ Ru8+ 152 (6) 56 (6) 75 (6) 95 (6) 80 (6) 69 (6) 110 (8) 92 (8) 81 (8) 160 (8) 84 (8) 74 (8)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Thermochemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY