
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
![306
3.
³ [34]
$[6]
5.
1 -1
3
7.
9.
11.
-6-1 2
320
-14 -2 5
3-1-1
-12 0 5
4 -2 -1
24 4
1-1
3
4. 13-16
9-11
6.
8.
2 2
33
12.
-2-2
10. -7 4-3
83 3
32-16 13
6441
461
4164
14 46
4
Chapter 4 The Eigenvalue Problem
Exercises 20-23 illustrate the Cayley-Hamilton theo-
rem, which states that if p(t) is the characteristic poly-
nomial for A, then p(A) is the zero matrix. (As in Ex-
ercise 18, p(A) is the (n × n) matrix that comes from
substituting A fort in p(t).) In Exercises 20-23, verify
that p(A) = O for the given matrix A.
20. A in Exercise 3
21. A in Exercise 4
23. A in Exercise 13
22. A in Exercise 9
with Ax = λx, x = 0.]
16. Prove property (c) of Theorem 11.
17. Complete the proof of property (a) of Theorem 11.
18. Let q(t) = t³ - 21² - t + 2; and for any (nx n)
matrix H, define the matrix polynomial q (H) by
q(H) = H³ - 2H² – H+21,
where I is the (n × n) identity matrix.
a) Prove that if λ is an eigenvalue of H, then the
number q (2) is an eigenvalue of the matrix
q(H). [Hint: Suppose that Hx = λx, where
x = 0, and use Theorem 11 to evaluate q (H)x.]
b) Use part a) to calculate the eigenvalues of q (A)
and q (B), where A and B are from Exercises 7
and 8, respectively.
19. With q (t) as in Exercise 18, verify that q(C) is the
zero matrix, where C is from Exercise 9. (Note that
q(t) is the characteristic polynomial for C. See Ex-
ercises 20-23.)
A =
-an-1-an-2 ... a₁-ao
0
0
1
0
0
0
1
0
0
0
1
0
a) For n = 2 and for n = 3, show that
det(AtI) = (-1)" q(t).](https://content.bartleby.com/qna-images/question/ffe59cad-beea-4c16-ba11-01db473c9577/576901e2-1553-431d-973a-7939372e6e06/njk2rfi_thumbnail.jpeg)
Transcribed Image Text:306
3.
³ [34]
$[6]
5.
1 -1
3
7.
9.
11.
-6-1 2
320
-14 -2 5
3-1-1
-12 0 5
4 -2 -1
24 4
1-1
3
4. 13-16
9-11
6.
8.
2 2
33
12.
-2-2
10. -7 4-3
83 3
32-16 13
6441
461
4164
14 46
4
Chapter 4 The Eigenvalue Problem
Exercises 20-23 illustrate the Cayley-Hamilton theo-
rem, which states that if p(t) is the characteristic poly-
nomial for A, then p(A) is the zero matrix. (As in Ex-
ercise 18, p(A) is the (n × n) matrix that comes from
substituting A fort in p(t).) In Exercises 20-23, verify
that p(A) = O for the given matrix A.
20. A in Exercise 3
21. A in Exercise 4
23. A in Exercise 13
22. A in Exercise 9
with Ax = λx, x = 0.]
16. Prove property (c) of Theorem 11.
17. Complete the proof of property (a) of Theorem 11.
18. Let q(t) = t³ - 21² - t + 2; and for any (nx n)
matrix H, define the matrix polynomial q (H) by
q(H) = H³ - 2H² – H+21,
where I is the (n × n) identity matrix.
a) Prove that if λ is an eigenvalue of H, then the
number q (2) is an eigenvalue of the matrix
q(H). [Hint: Suppose that Hx = λx, where
x = 0, and use Theorem 11 to evaluate q (H)x.]
b) Use part a) to calculate the eigenvalues of q (A)
and q (B), where A and B are from Exercises 7
and 8, respectively.
19. With q (t) as in Exercise 18, verify that q(C) is the
zero matrix, where C is from Exercise 9. (Note that
q(t) is the characteristic polynomial for C. See Ex-
ercises 20-23.)
A =
-an-1-an-2 ... a₁-ao
0
0
1
0
0
0
1
0
0
0
1
0
a) For n = 2 and for n = 3, show that
det(AtI) = (-1)" q(t).
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 3 images

Knowledge Booster
Similar questions
Recommended textbooks for you
- Advanced Engineering MathematicsAdvanced MathISBN:9780470458365Author:Erwin KreyszigPublisher:Wiley, John & Sons, IncorporatedNumerical Methods for EngineersAdvanced MathISBN:9780073397924Author:Steven C. Chapra Dr., Raymond P. CanalePublisher:McGraw-Hill EducationIntroductory Mathematics for Engineering Applicat...Advanced MathISBN:9781118141809Author:Nathan KlingbeilPublisher:WILEY
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,

Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education

Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,

