
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Question #3
![1. Let , y ER. Determine if the following are metrics on R or not
(a) d, (x, y) = V[x – y|
(b) d2(x,y) = (x – y)*
2. Let E CX where X is a metric space. Let E° denote all the interior points of E. (E°is an open
set-you don't have to prove this, but you can use this fact to prove the following)
(a) Show E is open if and only iff E = E°
(b) Show: If GCE and G is open, then G C E°
3. Let K,and K2 be compact subsets of a metric space X. Show K, U K2 is compact
Show NaEa Ka is closed
4. Let {Ka}aea be a collection of compact subsets of a metric space,
in X
5. (a) Consider the collection of open sets, {(-n,n)}"=1 in R with the usual metric d(x,y) =
|x – y| . Use this collection of open sets to show R is not compact (make sure to prove R =
Unej(-n, n) as part of your work).
(b) Give an example of a collection of compact sets in R , say {Kn}n=1 such that U=1 Kn is
not compact (Hint: consider part (a) )
6. Let E C X where X is a metric space. Show the limit points of E are the same as the limit
points of Ē , the closure of E. That is, show E'= (E U E')',
7. (a) Let A C X,B C X where X is a metric space. Show AnB CÃ O Ē
(b) Consider A = [3,7),B = (7,9] as subset of R with the usual metric, dr (x, y) = | x – y| .
Show Ā n B is not a subset of An B
8. Let X be a metric space. Let A and B be separated sets in X. Show either E CA or ESB
where E is a connected subset of A U B](https://content.bartleby.com/qna-images/question/cfc5bdab-6654-444e-b9d5-5fc4b8470fbb/9007f168-56ae-436b-9289-cf0e50c98243/g65hk5g_thumbnail.jpeg)
Transcribed Image Text:1. Let , y ER. Determine if the following are metrics on R or not
(a) d, (x, y) = V[x – y|
(b) d2(x,y) = (x – y)*
2. Let E CX where X is a metric space. Let E° denote all the interior points of E. (E°is an open
set-you don't have to prove this, but you can use this fact to prove the following)
(a) Show E is open if and only iff E = E°
(b) Show: If GCE and G is open, then G C E°
3. Let K,and K2 be compact subsets of a metric space X. Show K, U K2 is compact
Show NaEa Ka is closed
4. Let {Ka}aea be a collection of compact subsets of a metric space,
in X
5. (a) Consider the collection of open sets, {(-n,n)}"=1 in R with the usual metric d(x,y) =
|x – y| . Use this collection of open sets to show R is not compact (make sure to prove R =
Unej(-n, n) as part of your work).
(b) Give an example of a collection of compact sets in R , say {Kn}n=1 such that U=1 Kn is
not compact (Hint: consider part (a) )
6. Let E C X where X is a metric space. Show the limit points of E are the same as the limit
points of Ē , the closure of E. That is, show E'= (E U E')',
7. (a) Let A C X,B C X where X is a metric space. Show AnB CÃ O Ē
(b) Consider A = [3,7),B = (7,9] as subset of R with the usual metric, dr (x, y) = | x – y| .
Show Ā n B is not a subset of An B
8. Let X be a metric space. Let A and B be separated sets in X. Show either E CA or ESB
where E is a connected subset of A U B
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Similar questions
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Advanced Engineering MathematicsAdvanced MathISBN:9780470458365Author:Erwin KreyszigPublisher:Wiley, John & Sons, IncorporatedNumerical Methods for EngineersAdvanced MathISBN:9780073397924Author:Steven C. Chapra Dr., Raymond P. CanalePublisher:McGraw-Hill EducationIntroductory Mathematics for Engineering Applicat...Advanced MathISBN:9781118141809Author:Nathan KlingbeilPublisher:WILEY
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,

Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education

Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,

