Calculus: Early Transcendentals
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
Bartleby Related Questions Icon

Related questions

Question
Please help with a step by step solution to this problem
**Question 3:** Determine where \( f(x) = 12x - x^3 \) has any local maximums or any local minimums.

**Analysis:** 
To find the local maximums and minimums, we need to compute the first derivative of the function \( f(x) \) and then find the critical points by setting the derivative equal to zero.

1. **First Derivative:**
   \[
   f'(x) = \frac{d}{dx}(12x - x^3) = 12 - 3x^2
   \]

2. **Critical Points:**
   Set \( f'(x) = 0 \) to find critical points:
   \[
   12 - 3x^2 = 0
   \]
   \[
   3x^2 = 12
   \]
   \[
   x^2 = 4
   \]
   \[
   x = \pm 2
   \]

3. **Second Derivative Test:**
   To determine whether these critical points are local maximums or minimums, use the second derivative:
   \[
   f''(x) = \frac{d}{dx}(-3x^2) = -6x
   \]

   - Evaluate \( f''(x) \) at the critical points:
     - At \( x = 2 \):
       \[
       f''(2) = -6(2) = -12 \quad (\text{Negative, so } x = 2 \text{ is a local maximum})
       \]
     - At \( x = -2 \):
       \[
       f''(-2) = -6(-2) = 12 \quad (\text{Positive, so } x = -2 \text{ is a local minimum})
       \]

**Conclusion:**
The function \( f(x) = 12x - x^3 \) has a local maximum at \( x = 2 \) and a local minimum at \( x = -2 \).
expand button
Transcribed Image Text:**Question 3:** Determine where \( f(x) = 12x - x^3 \) has any local maximums or any local minimums. **Analysis:** To find the local maximums and minimums, we need to compute the first derivative of the function \( f(x) \) and then find the critical points by setting the derivative equal to zero. 1. **First Derivative:** \[ f'(x) = \frac{d}{dx}(12x - x^3) = 12 - 3x^2 \] 2. **Critical Points:** Set \( f'(x) = 0 \) to find critical points: \[ 12 - 3x^2 = 0 \] \[ 3x^2 = 12 \] \[ x^2 = 4 \] \[ x = \pm 2 \] 3. **Second Derivative Test:** To determine whether these critical points are local maximums or minimums, use the second derivative: \[ f''(x) = \frac{d}{dx}(-3x^2) = -6x \] - Evaluate \( f''(x) \) at the critical points: - At \( x = 2 \): \[ f''(2) = -6(2) = -12 \quad (\text{Negative, so } x = 2 \text{ is a local maximum}) \] - At \( x = -2 \): \[ f''(-2) = -6(-2) = 12 \quad (\text{Positive, so } x = -2 \text{ is a local minimum}) \] **Conclusion:** The function \( f(x) = 12x - x^3 \) has a local maximum at \( x = 2 \) and a local minimum at \( x = -2 \).
Expert Solution
Check Mark
Step 1

To determine maxima or minima for the given function 

Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning