
Practical Management Science
6th Edition
ISBN: 9781337406659
Author: WINSTON, Wayne L.
Publisher: Cengage,
expand_more
expand_more
format_list_bulleted
Question
![3. [25 pts.] Four projects are available for investment. The projects require the cash flows and yield
the net present values (NPV) (in millions) shown in the following table.
Project
id.
1
2
Cash outflow at time
0 (million Lira)
8
8
NPV
(million Lira)
12
11
3
4
6
5
8
6
If 20 million Lira is available for investment at time 0, find the investment plan that maximizes NPV.
All investments are required to be 0 or 1 (fractional investment values are not permitted).
a. Formulate the mathematical model. (Write the decision variables, objective function and the
constraints.) [10 pts.]
b. Find the optimal solution by using Branch and Bound method (Draw the branch and bound
tree clearly, write also lower bounds(LB)) (Left branches x=0, right branches x =1) [15 pts.].](https://content.bartleby.com/qna-images/question/846d8e90-368e-44b4-a8e1-970f7d77af41/5e1641e1-0183-4703-893c-9ac2efc5fcf7/y2xxh3k_thumbnail.jpeg)
Transcribed Image Text:3. [25 pts.] Four projects are available for investment. The projects require the cash flows and yield
the net present values (NPV) (in millions) shown in the following table.
Project
id.
1
2
Cash outflow at time
0 (million Lira)
8
8
NPV
(million Lira)
12
11
3
4
6
5
8
6
If 20 million Lira is available for investment at time 0, find the investment plan that maximizes NPV.
All investments are required to be 0 or 1 (fractional investment values are not permitted).
a. Formulate the mathematical model. (Write the decision variables, objective function and the
constraints.) [10 pts.]
b. Find the optimal solution by using Branch and Bound method (Draw the branch and bound
tree clearly, write also lower bounds(LB)) (Left branches x=0, right branches x =1) [15 pts.].
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps

Knowledge Booster
Similar questions
- If the number of competitors in Example 11.1 doubles, how does the optimal bid change?arrow_forwardAssume the demand for a companys drug Wozac during the current year is 50,000, and assume demand will grow at 5% a year. If the company builds a plant that can produce x units of Wozac per year, it will cost 16x. Each unit of Wozac is sold for 3. Each unit of Wozac produced incurs a variable production cost of 0.20. It costs 0.40 per year to operate a unit of capacity. Determine how large a Wozac plant the company should build to maximize its expected profit over the next 10 years.arrow_forwardSuppose you are borrowing 25,000 and making monthly payments with 1% interest. Show that the monthly payments should equal 556.11. The key relationships are that for any month t (Ending month t balance) = (Ending month t 1 balance) ((Monthly payment) (Month t interest)) (Month t interest) = (Beginning month t balance) (Monthly interest rate) Of course, the ending month 60 balance must equal 0.arrow_forward
- A project does not necessarily have a unique IRR. (Refer to the previous problem for more information on IRR.) Show that a project with the following cash flows has two IRRs: year 1, 20; year 2, 82; year 3, 60; year 4, 2. (Note: It can be shown that if the cash flow of a project changes sign only once, the project is guaranteed to have a unique IRR.)arrow_forwardIt is January 1 of year 0, and Merck is trying to determine whether to continue development of a new drug. The following information is relevant. You can assume that all cash flows occur at the ends of the respective years. Clinical trials (the trials where the drug is tested on humans) are equally likely to be completed in year 1 or 2. There is an 80% chance that clinical trials will succeed. If these trials fail, the FDA will not allow the drug to be marketed. The cost of clinical trials is assumed to follow a triangular distribution with best case 100 million, most likely case 150 million, and worst case 250 million. Clinical trial costs are incurred at the end of the year clinical trials are completed. If clinical trials succeed, the drug will be sold for five years, earning a profit of 6 per unit sold. If clinical trials succeed, a plant will be built during the same year trials are completed. The cost of the plant is assumed to follow a triangular distribution with best case 1 billion, most likely case 1.5 billion, and worst case 2.5 billion. The plant cost will be depreciated on a straight-line basis during the five years of sales. Sales begin the year after successful clinical trials. Of course, if the clinical trials fail, there are no sales. During the first year of sales, Merck believe sales will be between 100 million and 200 million units. Sales of 140 million units are assumed to be three times as likely as sales of 120 million units, and sales of 160 million units are assumed to be twice as likely as sales of 120 million units. Merck assumes that for years 2 to 5 that the drug is on the market, the growth rate will be the same each year. The annual growth in sales will be between 5% and 15%. There is a 25% chance that the annual growth will be 7% or less, a 50% chance that it will be 9% or less, and a 75% chance that it will be 12% or less. Cash flows are discounted 15% per year, and the tax rate is 40%. Use simulation to model Mercks situation. Based on the simulation output, would you recommend that Merck continue developing? Explain your reasoning. What are the three key drivers of the projects NPV? (Hint: The way the uncertainty about the first year sales is stated suggests using the General distribution, implemented with the RISKGENERAL function. Similarly, the way the uncertainty about the annual growth rate is stated suggests using the Cumul distribution, implemented with the RISKCUMUL function. Look these functions up in @RISKs online help.)arrow_forwardIn Example 11.1, the possible profits vary from negative to positive for each of the 10 possible bids examined. a. For each of these, use @RISKs RISKTARGET function to find the probability that Millers profit is positive. Do you believe these results should have any bearing on Millers choice of bid? b. Use @RISKs RISKPERCENTILE function to find the 10th percentile for each of these bids. Can you explain why the percentiles have the values you obtain?arrow_forward
- The Tinkan Company produces one-pound cans for the Canadian salmon industry. Each year the salmon spawn during a 24-hour period and must be canned immediately. Tinkan has the following agreement with the salmon industry. The company can deliver as many cans as it chooses. Then the salmon are caught. For each can by which Tinkan falls short of the salmon industrys needs, the company pays the industry a 2 penalty. Cans cost Tinkan 1 to produce and are sold by Tinkan for 2 per can. If any cans are left over, they are returned to Tinkan and the company reimburses the industry 2 for each extra can. These extra cans are put in storage for next year. Each year a can is held in storage, a carrying cost equal to 20% of the cans production cost is incurred. It is well known that the number of salmon harvested during a year is strongly related to the number of salmon harvested the previous year. In fact, using past data, Tinkan estimates that the harvest size in year t, Ht (measured in the number of cans required), is related to the harvest size in the previous year, Ht1, by the equation Ht = Ht1et where et is normally distributed with mean 1.02 and standard deviation 0.10. Tinkan plans to use the following production strategy. For some value of x, it produces enough cans at the beginning of year t to bring its inventory up to x+Ht, where Ht is the predicted harvest size in year t. Then it delivers these cans to the salmon industry. For example, if it uses x = 100,000, the predicted harvest size is 500,000 cans, and 80,000 cans are already in inventory, then Tinkan produces and delivers 520,000 cans. Given that the harvest size for the previous year was 550,000 cans, use simulation to help Tinkan develop a production strategy that maximizes its expected profit over the next 20 years. Assume that the company begins year 1 with an initial inventory of 300,000 cans.arrow_forwardReferring to the retirement example in Example 11.6, rerun the model for a planning horizon of 10 years; 15 years; 25 years. For each, which set of investment weights maximizes the VAR 5% (the 5th percentile) of final cash in todays dollars? Does it appear that a portfolio heavy in stocks is better for long horizons but not for shorter horizons?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,

Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,