Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

The bronze bar 3 m long with a cross-sectional area of 350 mm2 is placed between two rigid walls. At a temperature of –20°C, there is a gap of 2.2 mm, as shown below.

Determine the temperature in °F at which the compressive stress in the bar will be 30 MPa. Use α =18(10)-6/°C and E = 80 GPa.

Note: Draw the Free Body Diagram, include the units/dimensions, use the proper formula and round-off all the answers and final answers to 3 decimal places.

- 3 m-
Transcribed Image Text:- 3 m-
Fundamental Equations of Mechanics of Materials
Axial Load
Shear
Normal Stress
Average direct shear stress
V
A
Tavg
A
Displacement
P(x)dx
Transverse shear stress
8 =
A (x)E
VQ
It
PL
AE
Shear flow
VQ
q = Tt =
δ- α ΔΤL
= a
Torsion
Stress in Thin-Walled Pressure Vessel
Shear stress in circular shaft
Тр
Cylinder
pr
pr
2t
where
Sphere
pr
= solid cross section
01 = 02 =
2t
J =
- (c,“ – c,")
Stress Transformation Equations
tubular cross section
0x + 0y
O, – 0,
+
y
cos 20 +
Power
sin 20
2
P = Tw = 2™fT
Ox – 0y
Angle of twist
sin 20 + Try cos 20
2
T(x)dx
Principal Stress
J(x)G
Txy
tan 26,
TL
$ = E
JG
(ox – 0,)/2
Ox + 0y
1,2
0,- 0,
y
Average shear stress in a thin-walled tube
+ Tây
2
T
Tavg
21A m
Maximum in-plane shear stress
(0, – 0,)/2
Shear Flow
tan 20,
T
Txy
q = Tavg!
2A m
Tmax
+ Txy
2
Bending
Ox + 0y
O avg
Normal stress
Мy
Absolute maximum shear stress
I
σ.
max
Unsymmetric bending
Tabs
max
for ởmax, O min same sign
2
Mạy
max
Ở min
tan a
Tabs
max
for omax, Omin Opposite signs
tan 0
2
Geometric Properties of Area Elements
Material Property Relations
Poisson's ratio
-A = bh
Elat
1, = bh
!, = hb
long
C
%3D
Generalized Hooke's Law
:[0, - vo, + o.)]
Rectangular area
%3D
Ex
E
[0, – v(o, + 0,)]
-A = bh
E
Ez
[0. - v(0, + 0,)]
E
1
Tyz, Yzx
1
%3D
Yxy
Txy Yyz
Triangular area
where
E
G =
2(1 + v)
A =
a
(9 + D)w :
Relations Between w, V, M
h
(2a + b\
a + b
dM
= V
dx
dV
b
w(x),
dx
Trapezoidal area
Elastic Curve
1
M
-A =
EI
d*v
EI
=w(x)
!, = }ar*
%3D
d'v
El
= V(x)
Semicircular area
dv
El
dx?
M(x)
-A = Tr²
Buckling
Critical axial load
1, = fart
!, = fart
T²EI
Per
(KL)²
Critical stress
VIJA
O cr
Circular area
(KL/r)²*
Secant formula
ес
P
Ở max
1 +
sec
A
V EA
žab
A =
Energy Methods
Conservation of energy
U. = U;
zero slope
Strain energy
N²L
Semiparabolic area
U; =
2AE
constant axial load
"M²dx
U, =
bending moment
%3D
2EI
A =
U; =
transverse shear
%3D
2GA
zero slope -
pLT°dx
torsional moment
%3D
2GJ
Exparabolic area
Transcribed Image Text:Fundamental Equations of Mechanics of Materials Axial Load Shear Normal Stress Average direct shear stress V A Tavg A Displacement P(x)dx Transverse shear stress 8 = A (x)E VQ It PL AE Shear flow VQ q = Tt = δ- α ΔΤL = a Torsion Stress in Thin-Walled Pressure Vessel Shear stress in circular shaft Тр Cylinder pr pr 2t where Sphere pr = solid cross section 01 = 02 = 2t J = - (c,“ – c,") Stress Transformation Equations tubular cross section 0x + 0y O, – 0, + y cos 20 + Power sin 20 2 P = Tw = 2™fT Ox – 0y Angle of twist sin 20 + Try cos 20 2 T(x)dx Principal Stress J(x)G Txy tan 26, TL $ = E JG (ox – 0,)/2 Ox + 0y 1,2 0,- 0, y Average shear stress in a thin-walled tube + Tây 2 T Tavg 21A m Maximum in-plane shear stress (0, – 0,)/2 Shear Flow tan 20, T Txy q = Tavg! 2A m Tmax + Txy 2 Bending Ox + 0y O avg Normal stress Мy Absolute maximum shear stress I σ. max Unsymmetric bending Tabs max for ởmax, O min same sign 2 Mạy max Ở min tan a Tabs max for omax, Omin Opposite signs tan 0 2 Geometric Properties of Area Elements Material Property Relations Poisson's ratio -A = bh Elat 1, = bh !, = hb long C %3D Generalized Hooke's Law :[0, - vo, + o.)] Rectangular area %3D Ex E [0, – v(o, + 0,)] -A = bh E Ez [0. - v(0, + 0,)] E 1 Tyz, Yzx 1 %3D Yxy Txy Yyz Triangular area where E G = 2(1 + v) A = a (9 + D)w : Relations Between w, V, M h (2a + b\ a + b dM = V dx dV b w(x), dx Trapezoidal area Elastic Curve 1 M -A = EI d*v EI =w(x) !, = }ar* %3D d'v El = V(x) Semicircular area dv El dx? M(x) -A = Tr² Buckling Critical axial load 1, = fart !, = fart T²EI Per (KL)² Critical stress VIJA O cr Circular area (KL/r)²* Secant formula ес P Ở max 1 + sec A V EA žab A = Energy Methods Conservation of energy U. = U; zero slope Strain energy N²L Semiparabolic area U; = 2AE constant axial load "M²dx U, = bending moment %3D 2EI A = U; = transverse shear %3D 2GA zero slope - pLT°dx torsional moment %3D 2GJ Exparabolic area
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Bars
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning