Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN: 9780133923605
Author: Robert L. Boylestad
Publisher: PEARSON
Bartleby Related Questions Icon

Related questions

Question

 mutual leakage terms for flux linkage 

Ks, Ks^-1 , Ls

If I multiply Ks by it inverse I should get the intentity matrix, then If I muliply by Ls matrix I should get the Ls matrix right.

I did the matrix but It doenst not become the indenty matrix multpy by Ls and I also I have no Idea how the anwer would Lis at the last term of the last matrix on the first picture. 

## Matrix Multiplication and Transformation

### Original Matrix Components

The matrices involved here represent transformations using trigonometric functions and constants. They appear to be part of calculations in electrical engineering, possibly related to inductance and angular relationships.

#### Components

1. **Trigonometric Functions:**
   - \( \cos(\Theta) \)
   - \( \sin(\Theta) \)
   - \( \cos(\Theta - \frac{2\pi}{3}) \)
   - \( \sin(\Theta - \frac{2\pi}{3}) \)
   - \( \cos(\Theta + \frac{2\pi}{3}) \)
   - \( \sin(\Theta + \frac{2\pi}{3}) \)

2. **Inductance Components:**
   - \(L_{is} + L_{ms}\)
   - \(-\frac{1}{2}L_{ms}\)

### Initial Matrix

The initial interaction is shown through two separate matrices being multiplied:

- **First Matrix:**

  \[
  \begin{bmatrix}
  \cos(\Theta) & \cos(\Theta - \frac{2\pi}{3}) & \cos(\Theta + \frac{2\pi}{3}) \\
  \sin(\Theta) & \sin(\Theta - \frac{2\pi}{3}) & \sin(\Theta + \frac{2\pi}{3}) \\
  \frac{1}{2} & \frac{1}{2} & \frac{1}{2}
  \end{bmatrix}
  \]

- **Second Matrix:**

  \[
  \begin{bmatrix}
  L_{is} + L_{ms} & -\frac{1}{2}L_{ms} & -\frac{1}{2}L_{ms} \\
  -\frac{1}{2}L_{ms} & L_{is} + L_{ms} & -\frac{1}{2}L_{ms} \\
  -\frac{1}{2}L_{ms} & -\frac{1}{2}L_{ms} & L_{is} + L_{ms}
  \end{bmatrix}
  \]

### Resulting Matrix

The multiplication of these matrices results in a new matrix represented in MatrixForm:

\[
\left(
\begin{
expand button
Transcribed Image Text:## Matrix Multiplication and Transformation ### Original Matrix Components The matrices involved here represent transformations using trigonometric functions and constants. They appear to be part of calculations in electrical engineering, possibly related to inductance and angular relationships. #### Components 1. **Trigonometric Functions:** - \( \cos(\Theta) \) - \( \sin(\Theta) \) - \( \cos(\Theta - \frac{2\pi}{3}) \) - \( \sin(\Theta - \frac{2\pi}{3}) \) - \( \cos(\Theta + \frac{2\pi}{3}) \) - \( \sin(\Theta + \frac{2\pi}{3}) \) 2. **Inductance Components:** - \(L_{is} + L_{ms}\) - \(-\frac{1}{2}L_{ms}\) ### Initial Matrix The initial interaction is shown through two separate matrices being multiplied: - **First Matrix:** \[ \begin{bmatrix} \cos(\Theta) & \cos(\Theta - \frac{2\pi}{3}) & \cos(\Theta + \frac{2\pi}{3}) \\ \sin(\Theta) & \sin(\Theta - \frac{2\pi}{3}) & \sin(\Theta + \frac{2\pi}{3}) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \] - **Second Matrix:** \[ \begin{bmatrix} L_{is} + L_{ms} & -\frac{1}{2}L_{ms} & -\frac{1}{2}L_{ms} \\ -\frac{1}{2}L_{ms} & L_{is} + L_{ms} & -\frac{1}{2}L_{ms} \\ -\frac{1}{2}L_{ms} & -\frac{1}{2}L_{ms} & L_{is} + L_{ms} \end{bmatrix} \] ### Resulting Matrix The multiplication of these matrices results in a new matrix represented in MatrixForm: \[ \left( \begin{
### Transformation Matrices and Inductance Matrix in Electrical Engineering

#### Clarke Transformation Matrix (\( \mathbf{K_s} \))
The Clarke transformation matrix, \( \mathbf{K_s} \), is used to transform three-phase coordinates into two-phase orthogonal coordinates. This matrix is defined as:

\[
\mathbf{K_s} = \frac{2}{3} \begin{bmatrix}
\cos \theta & \cos \left( \theta - \frac{2\pi}{3} \right) & \cos \left( \theta + \frac{2\pi}{3} \right) \\
\sin \theta & \sin \left( \theta - \frac{2\pi}{3} \right) & \sin \left( \theta + \frac{2\pi}{3} \right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{bmatrix}
\]

#### Inverse Clarke Transformation (\( (\mathbf{K_s})^{-1} \))
The inverse of the Clarke transformation matrix converts two-phase orthogonal coordinates back to three-phase coordinates.

\[
(\mathbf{K_s})^{-1} = \begin{bmatrix}
\cos \theta & \sin \theta & 1 \\
\cos \left( \theta - \frac{2\pi}{3} \right) & \sin \left( \theta - \frac{2\pi}{3} \right) & 1 \\
\cos \left( \theta + \frac{2\pi}{3} \right) & \sin \left( \theta + \frac{2\pi}{3} \right) & 1
\end{bmatrix}
\]

#### Stator Self and Mutual Inductance Matrix (\( \mathbf{L_s} \))
This matrix represents the self and mutual inductances in a three-phase system.

\[
\mathbf{L_s} = \begin{bmatrix}
L_{ls} + L_{ms} & -\frac{1}{2}L_{ms} & -\frac{1}{2}L_{ms} \\
-\frac{1}{2}L_{ms} & L_{ls} + L_{ms} & -\frac{1}{2}L_{ms} \
expand button
Transcribed Image Text:### Transformation Matrices and Inductance Matrix in Electrical Engineering #### Clarke Transformation Matrix (\( \mathbf{K_s} \)) The Clarke transformation matrix, \( \mathbf{K_s} \), is used to transform three-phase coordinates into two-phase orthogonal coordinates. This matrix is defined as: \[ \mathbf{K_s} = \frac{2}{3} \begin{bmatrix} \cos \theta & \cos \left( \theta - \frac{2\pi}{3} \right) & \cos \left( \theta + \frac{2\pi}{3} \right) \\ \sin \theta & \sin \left( \theta - \frac{2\pi}{3} \right) & \sin \left( \theta + \frac{2\pi}{3} \right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \] #### Inverse Clarke Transformation (\( (\mathbf{K_s})^{-1} \)) The inverse of the Clarke transformation matrix converts two-phase orthogonal coordinates back to three-phase coordinates. \[ (\mathbf{K_s})^{-1} = \begin{bmatrix} \cos \theta & \sin \theta & 1 \\ \cos \left( \theta - \frac{2\pi}{3} \right) & \sin \left( \theta - \frac{2\pi}{3} \right) & 1 \\ \cos \left( \theta + \frac{2\pi}{3} \right) & \sin \left( \theta + \frac{2\pi}{3} \right) & 1 \end{bmatrix} \] #### Stator Self and Mutual Inductance Matrix (\( \mathbf{L_s} \)) This matrix represents the self and mutual inductances in a three-phase system. \[ \mathbf{L_s} = \begin{bmatrix} L_{ls} + L_{ms} & -\frac{1}{2}L_{ms} & -\frac{1}{2}L_{ms} \\ -\frac{1}{2}L_{ms} & L_{ls} + L_{ms} & -\frac{1}{2}L_{ms} \
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,