2. Use separation of variables to find a product solution to the following: Hint: No need to separate into 3 cases A. B. C. D. x ди du = y əx ду u = C₁ u = C₁ (1) ² U = C₁x²²y²2-1 u = C₁ (xy) cz

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Answer 2 Only
1. Use separation of variables to find a product solution to the following:
a²u
k -U=
dx2
A.
B.
C.
D.
B.
C.
Hint: No need to separate into 3 cases
A.
D.
u = e-t (A₁eka²t cosh ax + B₁eka²t sinh ax)
u = e-t (A₂e-ka²t cos ax + B₂e-ka²t sin ax)
u = e-t (A3x + B3)
-ka²t
u=e¹ (A₁e-ka²t
cosh ax + B₁e sinhax)
u = et (A₂eka²t cos ax + B₂eka²t sin ax)
u = et (A3x + B3)
2. Use separation of variables to find a product solution to the following:
ди
at
u = e-t
e-t(A₁e-ka²t cosh ax + B₁e-ka²t sinh ax)
u = e-t (A₂eka²t cos ax + B₂eka²t sin ax)
u = e-t (A3x + B3)
u = et (A₁eka²t cosh ax + B₁eka²t sinh ax)
u = et (A₂e-ka²t cos ax + B₂e-ka²t sin ax)
u = et (A3x + B3)
X
du
əx
= y
u = C₁
k> 0
du
dy
u = C₁
C₂
G₂₁ (1) ²²
u = C₁x²²yC₂-1
u = c₁(xy) c2
Transcribed Image Text:1. Use separation of variables to find a product solution to the following: a²u k -U= dx2 A. B. C. D. B. C. Hint: No need to separate into 3 cases A. D. u = e-t (A₁eka²t cosh ax + B₁eka²t sinh ax) u = e-t (A₂e-ka²t cos ax + B₂e-ka²t sin ax) u = e-t (A3x + B3) -ka²t u=e¹ (A₁e-ka²t cosh ax + B₁e sinhax) u = et (A₂eka²t cos ax + B₂eka²t sin ax) u = et (A3x + B3) 2. Use separation of variables to find a product solution to the following: ди at u = e-t e-t(A₁e-ka²t cosh ax + B₁e-ka²t sinh ax) u = e-t (A₂eka²t cos ax + B₂eka²t sin ax) u = e-t (A3x + B3) u = et (A₁eka²t cosh ax + B₁eka²t sinh ax) u = et (A₂e-ka²t cos ax + B₂e-ka²t sin ax) u = et (A3x + B3) X du əx = y u = C₁ k> 0 du dy u = C₁ C₂ G₂₁ (1) ²² u = C₁x²²yC₂-1 u = c₁(xy) c2
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,