![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
![2.
trace.
Let n = 4 (we choose 4 for calculation simplicity, but the following are true for arbitrary n).
Consider the following linear transformation:
tr : R" +R
a11
a12
a13
ain
...
a22
a23
a2n
...
a21
a32
a33
Ha11 + a22 + a33 +
...+ ann =
...
a31
i=1
An3
ann
...
anl
an2
Let In be the n x n identity matrix (or equivalently, a vector in R""). Calculate
(A)
that tr(In) = n.
Let A, B be two n x n matrices (or equivalently, a vector in Rn*). Calculate that
(B)
tr(AB) = tr(BA).
Hint. Write A = [aj] and B = [br1]. Write down the diagonal of AB and BA in terms of aij
and bri. Then compute tr(AB) and tr(BA).](https://content.bartleby.com/qna-images/question/acdec92e-028d-4f37-af60-841922a4cee5/dd94c591-b732-4b99-8070-32c7c110adab/03b1di_thumbnail.png)
Transcribed Image Text:2.
trace.
Let n = 4 (we choose 4 for calculation simplicity, but the following are true for arbitrary n).
Consider the following linear transformation:
tr : R" +R
a11
a12
a13
ain
...
a22
a23
a2n
...
a21
a32
a33
Ha11 + a22 + a33 +
...+ ann =
...
a31
i=1
An3
ann
...
anl
an2
Let In be the n x n identity matrix (or equivalently, a vector in R""). Calculate
(A)
that tr(In) = n.
Let A, B be two n x n matrices (or equivalently, a vector in Rn*). Calculate that
(B)
tr(AB) = tr(BA).
Hint. Write A = [aj] and B = [br1]. Write down the diagonal of AB and BA in terms of aij
and bri. Then compute tr(AB) and tr(BA).
Expert Solution
![Check Mark](/static/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
![Blurred answer](/static/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Similar questions
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Advanced Engineering MathematicsAdvanced MathISBN:9780470458365Author:Erwin KreyszigPublisher:Wiley, John & Sons, IncorporatedNumerical Methods for EngineersAdvanced MathISBN:9780073397924Author:Steven C. Chapra Dr., Raymond P. CanalePublisher:McGraw-Hill EducationIntroductory Mathematics for Engineering Applicat...Advanced MathISBN:9781118141809Author:Nathan KlingbeilPublisher:WILEY
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
![Text book image](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
![Text book image](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)