2. For a 50-story (above the ground) building with 4 floors of basement (D = 12.0 m), the average floor weight (including dead load and live load) is 15 kN/m². Assume the height of each floor of the basement is 3 m (including the thickness of the slab). The mat foundation (with a dimension of 30 m x 20 m) is situated in a thick clay layer with a saturated unit weight of 18 kN/m³ and an undrained shear strength (Su) of 30 kPa (remains constant with depth). In addition, the clay has an effective friction angle o' = 28° while c' = 0. Answer the following questions: (A) Would the mat foundation of the building be fully compensated? (B) The factor of safety for bearing capacity in a short-term condition. (C) The factor of safety for bearing capacity in a long-term condition. (Use FS = qu(net)/q, where the generalized bearing capacity equation is given by qu(net) = c'NcFcs Fcd Fci + YDNqFqsFqa Fai + 0.5yB Ny Fys Fya Fyi - YDf and q is the net average applied pressure on soil). Figure, Tables, and Equations: qu5.14c 1+0.195- 52) (1+0.4%)+9 9.-5.14c14 5.14c. (1+0.195)(1 +0.4%) Qu(net) qu-q= 5.14c, 1+ 0.195 Pile: Meyerhof's method Q₁ = 4,9 = 4,q'N₁₁ ≤ A¸¶₁ q₁ = 0.5ptan o' TABLE 12.6 Interpolated Values of N Based on Meyerhof's Theory (10.11) B Soil friction angle, ' (deg) 20 21 N₁₁ (10.12) all(net) Qu(net) FS = 1.713c,(1+0.195)(1 +0.4%) (10.13) B 26 27 28 General bearing capacity equation qu= c'NcFcs Fca Fci+q'NqFqsFqaFqi + 0.5yBNy Fys Fya Fyi Shape factors by De Beer Depth factors by Hansen (1970) (1970) 29 Inclination factors by Meyerhof (1963) and Hanna and Meyerhof (1981) 33 2222222222223 12.4 13.8 15.5 17.9 24 21.4 25 26.0 29.5 34.0 39.7 46.5 30 56.7 68.2 81.0 96.0 Fcs = 1+ B N L-Ne 34 Во 115.0 Fcd = 1 +0.4() Fci = Fqi = (1 900)2 35 143.0 36 168.0 B = Fas 1+) tan op' Fqd = 1 + 2 tan op' (1 - sin p')² - Df 37 194.0 Fyi = (1 - B 38 231.0 B Fys = 1-0.4(7) Fyd = 1 39 276.0 40 346.0 41 420.0 42 525.0 Shallow foundation: TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) 43 650.0 TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) (Continued) 44 780.0 45 930.0 $' N₂ N Ny $' N No N₁ $' No 22 N₁ Ny $' No Na 16.88 7.82 7.13 37 55.63 42.92 66.19 Ny 23 18.05 8.66 8.20 38 61.35 48.93 78.03 0 5.14 1.00 0.00 11 8.80 2.71 1.44 24 19.32 9.60 9.44 39 67.87 55.96 92.25 1 5.38 1.09 0.07 12 9.28 2.97 1.69 The critical depth for skin friction in piles 25 20.72 10.66 10.88 40 75.31 64.20 109.41 2 5.63 1.20 0.15 13 9.81 3.26 1.97 26 22.25 11.85 12.54 41 83.86 73.90 130.22 3 5.90 1.31 0.24 14 10.37 3.59 2.29 27 23.94 13.20 14.47 42 93.71 85.38 155.55 4 6.19 1.43 0.34 15 10.98 3.94 2.65 28 25.80 14.72 16.72 43 105.11 99.02 186.54 L'≈ 15D 5 6.49 1.57 0.45 16 11.63 29 4.34 27.86 16.44 19.34 44 118.37 115.31 224.64 3.06 30 30.14 18.40 22.40 45 133.88 134.88 271.76 6 6.81 1.72 0.57 17 12.34 4.77 3.53 31 32.67 20.63 25.99 46 152.10 158.51 330.35 7 7.16 1.88 0.71 18 13.10 5.26 4.07 32 35.49 23.18 30.22 47 173.64 187.21 403.67 The unit frictional resistance or the unit skin friction 8 7.53 2.06 0.86 19 13.93 5.80 4.68 33 38.64 26.09 35.19 48 199.26 222.31 496.01 9 7.92 2.25 1.03 20 14.83 6.40 5.39 34 42.16 29.44 41.06 49 229.93 265.51 613.16 10 8.35 2.47 1.22 21 15.82 7.07 6.20 35 46.12 33.30 48.03 50 266.89 319.07 762.89 (continued) 36 50.59 37.75 56.31 f = Ko tan 8'

Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Braja M. Das, Nagaratnam Sivakugan
Chapter10: Mat Foundations
Section: Chapter Questions
Problem 10.8P
icon
Related questions
Question

I need detailed explanation solving this exercise from Foundation Engineering, step by step please.

2. For a 50-story (above the ground) building with 4 floors of basement (D = 12.0 m), the average floor weight
(including dead load and live load) is 15 kN/m². Assume the height of each floor of the basement is 3 m (including
the thickness of the slab). The mat foundation (with a dimension of 30 m x 20 m) is situated in a thick clay layer
with a saturated unit weight of 18 kN/m³ and an undrained shear strength (Su) of 30 kPa (remains constant with
depth). In addition, the clay has an effective friction angle o' = 28° while c' = 0. Answer the following questions:
(A) Would the mat foundation of the building be fully compensated? (B) The factor of safety for bearing capacity
in a short-term condition. (C) The factor of safety for bearing capacity in a long-term condition.
(Use FS = qu(net)/q, where the generalized bearing capacity equation is given by qu(net) = c'NcFcs Fcd Fci +
YDNqFqsFqa Fai + 0.5yB Ny Fys Fya Fyi - YDf and q is the net average applied pressure on soil).
Figure, Tables, and Equations:
qu5.14c 1+0.195-
52) (1+0.4%)+9
9.-5.14c14
5.14c. (1+0.195)(1 +0.4%)
Qu(net) qu-q= 5.14c, 1+ 0.195
Pile: Meyerhof's method
Q₁ = 4,9 = 4,q'N₁₁ ≤ A¸¶₁
q₁ = 0.5ptan o'
TABLE 12.6 Interpolated Values of N Based on
Meyerhof's Theory
(10.11)
B
Soil friction angle, ' (deg)
20
21
N₁₁
(10.12)
all(net)
Qu(net)
FS
= 1.713c,(1+0.195)(1 +0.4%)
(10.13)
B
26
27
28
General bearing capacity equation qu= c'NcFcs Fca Fci+q'NqFqsFqaFqi + 0.5yBNy Fys Fya Fyi
Shape factors by De Beer Depth factors by Hansen (1970)
(1970)
29
Inclination factors by Meyerhof
(1963) and Hanna and Meyerhof
(1981)
33
2222222222223
12.4
13.8
15.5
17.9
24
21.4
25
26.0
29.5
34.0
39.7
46.5
30
56.7
68.2
81.0
96.0
Fcs = 1+
B N
L-Ne
34
Во
115.0
Fcd = 1 +0.4()
Fci = Fqi = (1
900)2
35
143.0
36
168.0
B
=
Fas 1+) tan op'
Fqd = 1 + 2 tan op' (1 - sin p')² -
Df
37
194.0
Fyi = (1
-
B
38
231.0
B
Fys = 1-0.4(7)
Fyd = 1
39
276.0
40
346.0
41
420.0
42
525.0
Shallow foundation:
TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31)
43
650.0
TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) (Continued)
44
780.0
45
930.0
$'
N₂
N
Ny
$'
N
No
N₁
$'
No
22
N₁
Ny
$'
No
Na
16.88
7.82
7.13
37
55.63
42.92
66.19
Ny
23
18.05
8.66
8.20
38
61.35
48.93
78.03
0
5.14
1.00
0.00
11
8.80
2.71
1.44
24
19.32
9.60
9.44
39
67.87
55.96
92.25
1
5.38
1.09
0.07
12
9.28
2.97
1.69
The critical depth for skin friction in piles
25
20.72
10.66
10.88
40
75.31
64.20
109.41
2
5.63
1.20
0.15
13
9.81
3.26
1.97
26
22.25
11.85
12.54
41
83.86
73.90
130.22
3
5.90
1.31
0.24
14
10.37
3.59
2.29
27
23.94
13.20
14.47
42
93.71
85.38
155.55
4
6.19
1.43
0.34
15
10.98
3.94
2.65
28
25.80
14.72
16.72
43
105.11
99.02
186.54
L'≈ 15D
5
6.49
1.57
0.45
16
11.63
29
4.34
27.86
16.44
19.34
44
118.37
115.31
224.64
3.06
30
30.14
18.40
22.40
45
133.88
134.88
271.76
6
6.81
1.72
0.57
17
12.34
4.77
3.53
31
32.67
20.63
25.99
46
152.10
158.51
330.35
7
7.16
1.88
0.71
18
13.10
5.26
4.07
32
35.49
23.18
30.22
47
173.64
187.21
403.67
The unit frictional resistance or the unit skin friction
8
7.53
2.06
0.86
19
13.93
5.80
4.68
33
38.64
26.09
35.19
48
199.26
222.31
496.01
9
7.92
2.25
1.03
20
14.83
6.40
5.39
34
42.16
29.44
41.06
49
229.93
265.51
613.16
10
8.35
2.47
1.22
21
15.82
7.07
6.20
35
46.12 33.30
48.03
50
266.89 319.07
762.89
(continued)
36
50.59
37.75
56.31
f = Ko tan 8'
Transcribed Image Text:2. For a 50-story (above the ground) building with 4 floors of basement (D = 12.0 m), the average floor weight (including dead load and live load) is 15 kN/m². Assume the height of each floor of the basement is 3 m (including the thickness of the slab). The mat foundation (with a dimension of 30 m x 20 m) is situated in a thick clay layer with a saturated unit weight of 18 kN/m³ and an undrained shear strength (Su) of 30 kPa (remains constant with depth). In addition, the clay has an effective friction angle o' = 28° while c' = 0. Answer the following questions: (A) Would the mat foundation of the building be fully compensated? (B) The factor of safety for bearing capacity in a short-term condition. (C) The factor of safety for bearing capacity in a long-term condition. (Use FS = qu(net)/q, where the generalized bearing capacity equation is given by qu(net) = c'NcFcs Fcd Fci + YDNqFqsFqa Fai + 0.5yB Ny Fys Fya Fyi - YDf and q is the net average applied pressure on soil). Figure, Tables, and Equations: qu5.14c 1+0.195- 52) (1+0.4%)+9 9.-5.14c14 5.14c. (1+0.195)(1 +0.4%) Qu(net) qu-q= 5.14c, 1+ 0.195 Pile: Meyerhof's method Q₁ = 4,9 = 4,q'N₁₁ ≤ A¸¶₁ q₁ = 0.5ptan o' TABLE 12.6 Interpolated Values of N Based on Meyerhof's Theory (10.11) B Soil friction angle, ' (deg) 20 21 N₁₁ (10.12) all(net) Qu(net) FS = 1.713c,(1+0.195)(1 +0.4%) (10.13) B 26 27 28 General bearing capacity equation qu= c'NcFcs Fca Fci+q'NqFqsFqaFqi + 0.5yBNy Fys Fya Fyi Shape factors by De Beer Depth factors by Hansen (1970) (1970) 29 Inclination factors by Meyerhof (1963) and Hanna and Meyerhof (1981) 33 2222222222223 12.4 13.8 15.5 17.9 24 21.4 25 26.0 29.5 34.0 39.7 46.5 30 56.7 68.2 81.0 96.0 Fcs = 1+ B N L-Ne 34 Во 115.0 Fcd = 1 +0.4() Fci = Fqi = (1 900)2 35 143.0 36 168.0 B = Fas 1+) tan op' Fqd = 1 + 2 tan op' (1 - sin p')² - Df 37 194.0 Fyi = (1 - B 38 231.0 B Fys = 1-0.4(7) Fyd = 1 39 276.0 40 346.0 41 420.0 42 525.0 Shallow foundation: TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) 43 650.0 TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) (Continued) 44 780.0 45 930.0 $' N₂ N Ny $' N No N₁ $' No 22 N₁ Ny $' No Na 16.88 7.82 7.13 37 55.63 42.92 66.19 Ny 23 18.05 8.66 8.20 38 61.35 48.93 78.03 0 5.14 1.00 0.00 11 8.80 2.71 1.44 24 19.32 9.60 9.44 39 67.87 55.96 92.25 1 5.38 1.09 0.07 12 9.28 2.97 1.69 The critical depth for skin friction in piles 25 20.72 10.66 10.88 40 75.31 64.20 109.41 2 5.63 1.20 0.15 13 9.81 3.26 1.97 26 22.25 11.85 12.54 41 83.86 73.90 130.22 3 5.90 1.31 0.24 14 10.37 3.59 2.29 27 23.94 13.20 14.47 42 93.71 85.38 155.55 4 6.19 1.43 0.34 15 10.98 3.94 2.65 28 25.80 14.72 16.72 43 105.11 99.02 186.54 L'≈ 15D 5 6.49 1.57 0.45 16 11.63 29 4.34 27.86 16.44 19.34 44 118.37 115.31 224.64 3.06 30 30.14 18.40 22.40 45 133.88 134.88 271.76 6 6.81 1.72 0.57 17 12.34 4.77 3.53 31 32.67 20.63 25.99 46 152.10 158.51 330.35 7 7.16 1.88 0.71 18 13.10 5.26 4.07 32 35.49 23.18 30.22 47 173.64 187.21 403.67 The unit frictional resistance or the unit skin friction 8 7.53 2.06 0.86 19 13.93 5.80 4.68 33 38.64 26.09 35.19 48 199.26 222.31 496.01 9 7.92 2.25 1.03 20 14.83 6.40 5.39 34 42.16 29.44 41.06 49 229.93 265.51 613.16 10 8.35 2.47 1.22 21 15.82 7.07 6.20 35 46.12 33.30 48.03 50 266.89 319.07 762.89 (continued) 36 50.59 37.75 56.31 f = Ko tan 8'
Expert Solution
steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781305081550
Author:
Braja M. Das
Publisher:
Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap…
Fundamentals of Geotechnical Engineering (MindTap…
Civil Engineering
ISBN:
9781305635180
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning