2. Centered-difference formula for the second derivative with two independent variables r and y a?u (x, y) = и(х+h.у ) — 2и(х,у)+и(х-h-у) и (§ , y ) 12 ax4 h? a²u (x , y) = h² a+u - (1 , η ) 12 əy4 и(x.y+h) — 2u(х .у) +и(х.у-h) where { E (x – h,x + h) and 7 E (y – h, y + h).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
2. Centered-difference formula for the second derivative with two independent variables r and y
a?u
(x, y) =
и(х+h.у ) — 2и(х,у)+и(х-h-у)
и
(§ , y )
12 ax4
h?
a²u
(x , y) =
h² a+u
- (1 , η )
12 əy4
и(x.y+h) — 2u(х .у) +и(х.у-h)
where { E (x – h,x + h) and 7 E (y – h, y + h).
Transcribed Image Text:2. Centered-difference formula for the second derivative with two independent variables r and y a?u (x, y) = и(х+h.у ) — 2и(х,у)+и(х-h-у) и (§ , y ) 12 ax4 h? a²u (x , y) = h² a+u - (1 , η ) 12 əy4 и(x.y+h) — 2u(х .у) +и(х.у-h) where { E (x – h,x + h) and 7 E (y – h, y + h).
Expert Solution
steps

Step by step

Solved in 2 steps with 6 images

Blurred answer
Knowledge Booster
Partial Derivatives
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,