2. (a) Verify the following for each of the six states 1s,2s, 2p,3s,3p,3d of the hydrogen atom. (5²)= (5) 3n²l(+1) 2Z n² [5n²+1-3l(l + 1)] 2Z² Z n² Z n³ ( l + 1²¹ )

icon
Related questions
Question

Please answer the red boxed equation in #2 for the state 3s only.

1
2
●
3
●
●
●
●
VE,,m(r, 0, 0) = fe,e(r)Y (0,0)
R(r) = rfe,e(r)
Radial Schrödinger equation
ħ² d²R
ħ²l(l+1)]
2μr²
2μ dr²
n
+
Electron
Dimensionless quantity
+
U(r) = --
a =
μе²
Atomic unit of energy
e²
24
Eatom = =
Atomic unit of length the Bohr radius
ħ
5.292 × 10-⁹ cm
a ħ²
0
0
1
0
1
2
не
r
} = a, &=
Ck+1 =
Ze²
E
Eatom
R(E)=9e-a5W (5)
q = (l+1)
r
e
W({) = ΣCKŠk
2
k=0
2qc₁ + (2Z-2aq)c₁ = 0
2ak + 2aq - 2Z
≈ 27.21 eV
0
1
0
2
1
0
(k + 1)(k + 2q)
Z
α = -
n
R = ER
kmax
The radial normalization condition:
[ro
0
ƒ²(r)r²dr = 1
Ck
Label
1s
2s
2p
3s
Un,l,m (r, 0,0) = fn,e(r)Ym (0,4)
3p
3d
For convenience, let us modify the radial
normalization condition as
Label
1s
2s
2p
3s
3p
3d
[ro
0
1. Verify the following for the case Z = 1,
the hydrogen atom.
f²()}² d = 1.
fne(r)
2e-
(1-7/8)e-²/2
1
={e-5/2
2√6
2
2
33/7 ( 1 - 3 8 + 2/3 ²²) 0-²/²
7 5
3√3
e-/3
(5²):
1
8६
27√₁ (1-11) 6-1/2
e-/3
4
=$²e-$/3
81√30
2.
(a) Verify the following for each of the six
states 1s,2s, 2p,3s,3p,3d of the hydrogen
atom.
(5)
3n² - l(l + 1)
2Z
n² [5n² + 1-3l(l + 1)]
2Z²
=
1
Z
(7)=7²
=
n³ ( l + ²/² )
(b) How does the average value of potential
energy compare with the total energy?
Transcribed Image Text:1 2 ● 3 ● ● ● ● VE,,m(r, 0, 0) = fe,e(r)Y (0,0) R(r) = rfe,e(r) Radial Schrödinger equation ħ² d²R ħ²l(l+1)] 2μr² 2μ dr² n + Electron Dimensionless quantity + U(r) = -- a = μе² Atomic unit of energy e² 24 Eatom = = Atomic unit of length the Bohr radius ħ 5.292 × 10-⁹ cm a ħ² 0 0 1 0 1 2 не r } = a, &= Ck+1 = Ze² E Eatom R(E)=9e-a5W (5) q = (l+1) r e W({) = ΣCKŠk 2 k=0 2qc₁ + (2Z-2aq)c₁ = 0 2ak + 2aq - 2Z ≈ 27.21 eV 0 1 0 2 1 0 (k + 1)(k + 2q) Z α = - n R = ER kmax The radial normalization condition: [ro 0 ƒ²(r)r²dr = 1 Ck Label 1s 2s 2p 3s Un,l,m (r, 0,0) = fn,e(r)Ym (0,4) 3p 3d For convenience, let us modify the radial normalization condition as Label 1s 2s 2p 3s 3p 3d [ro 0 1. Verify the following for the case Z = 1, the hydrogen atom. f²()}² d = 1. fne(r) 2e- (1-7/8)e-²/2 1 ={e-5/2 2√6 2 2 33/7 ( 1 - 3 8 + 2/3 ²²) 0-²/² 7 5 3√3 e-/3 (5²): 1 8६ 27√₁ (1-11) 6-1/2 e-/3 4 =$²e-$/3 81√30 2. (a) Verify the following for each of the six states 1s,2s, 2p,3s,3p,3d of the hydrogen atom. (5) 3n² - l(l + 1) 2Z n² [5n² + 1-3l(l + 1)] 2Z² = 1 Z (7)=7² = n³ ( l + ²/² ) (b) How does the average value of potential energy compare with the total energy?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer