College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
2) An electron in a hydrogen atom is in the initial state ni= 4. Calculate the wavelength of the photon emitted by this electron if it jumps to the final state. (A) nf= 3, (B)nf=2, or (c) nf=1.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- (a) Using the Pauli exclusion principle and the rules relating the allowed values of the quantum numbers (n,l,ml,ms), prove that the maximum number of electrons in a subshell is 2n2. (b) In a similar manner, prove that the maximum number of electrons in a shell is 2n2.arrow_forward(a) What is the momentum of a 0.0100-nm-wavelength photon that could detect details of an atom? (b) What is its energy in MeV?arrow_forwardWhen a hydrogen atom is in its ground state, what are the shortest and longest wavelengths of the photons it can absorb without being ionized?arrow_forward
- (a) Calculate the number of photoelectrons per second ejected from a 1.00-mm2 area of sodium metal by 500-nm M radiation having an intensity of 1.30 kW/m2 (the intensity of sunlight above the Earth's atmosphere). (b) Given that the binding energy is 2.28 eV, what power is carried away by the electrons? (c) The electrons carry away less power than brought in by the photons. Where does the other power go? How can it be recovered?arrow_forwardWhen the absorption spectrum of hydrogen at room temperature is analyzed, absorption lines for the Lyman series are found, but none are found for the Balmer series. What does this tell us about the energy state of most hydrogen atoms at room temperature?arrow_forward3:09 O O O 63° A X • N N O 5G „ll Quizzes a (absorption) Brackett series Paschen series Lyman series (emission) Balmer series Paschen series (emission) n= 2 n=3 n=4 .... Lyman series n-5 (a) (b) e These pictures refer to the energy levels of a hydrogen atom. You can find the error in both parts, (a) and (b). The arrows labeled "emission" in (a), and all the arrows in (b), indicate a transition in which an electron jumps from a higher- energy state to a lower-energy state. The different "series" of emission lines are characterized by the index n of the low- energy state in which the electron ends up. In particular, the Lyman series consists of all transitions that end up in the n=1 energy level, with an initial energy level that corresponds to the label n = 2, 3, 4, 5, etc. One of these values of n is not shown as an arrow in the Lyman emission series in figures (a) or (b). This is a significant error because that particular spectral line is very important in astronomy. Pick the value…arrow_forward
- Q3. An electron in an atom which is freely radiating power behaves as a damped simple harmonic oscillator. If the radiated power is given by P = 127 E, c³ at a wavelength of 2=6×10m Find (a) the Q-value of the atom and (b) its radiation lifetime(the time for its energy to decay to e of its original value q = 1.6×101°C, m =9.1x10' kg, c = 3×10 m/s, ɛ, = 8.85×1012arrow_forwardb) The Bohr model of the atom postulated electrons orbiting around the nucleus in stable circular orbits. De Broglie explained what orbits could exist by postulating that electrons (and anything else) with momentum p have an associated wavelength X, given by \ = h/p where h is Planck's constant. Then the allowed orbits are those with an integer number n of wavelengths in the circumference of the orbit. For electrons as for planets, the total energy of an orbit is E = -mv2. i) Write down and explain the three key equations that enable the derivation of the Ryd- mee¹ berg constant (1Ry = 2 with n = 1 and Z = 1), defining all the symbols. Show by 8€²n²h² putting the values in that this gives -13.6 eV, -3.40 eV and -1.51 eV for the energies to three significant figures of the first three hydrogen energy levels. ii) Consider the helium ion, He¹+, with one electron orbiting the helium nucleus. Ex- plain what changes from the Bohr model for hydrogen, and find the energies to three significant…arrow_forward(a) If an electron makes a transition from the n = 7 Bohr orbit to the n = 3 orbit, determine the wavelength of the photon created in the process. nm(b) Assuming that the atom was initially at rest, determine the recoil speed of the hydrogen atom when this photon is emitted. m/sarrow_forward
- It wasn’t 1.003 x 10^6 or 1003000 please help!arrow_forwardFor a hydrogen-like atom (the atom contains only one electron, like singly ionized He, doubly ionized Lithium, etc.), the energy levels are given by En = -Z2(13.6)/n2 eV where Z is the atomic number. If an electron in a doubly ionized Lithium atom jumps from the 2nd excited state to the ground state, what would be the wavelength of the emitted photon? A) 3.21 nm B) 3.21 pm C) 6.42 pm D) none of these.arrow_forward9. Considering the photoelectric effect; a) If a material has a cutoff wavelength of 780 nm what is the work function of the material? b) What is the maximum speed of liberated electrons when light with a wavelength of 410 nm is used to illuminate the material? If a liberated electron has 3.2349 eV of kinetic energy and it was a photon emitted from a hydrogen atom transition that liberated it, what energy level transition occurred? State both the initial and final energy level.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning