Calculus: Early Transcendentals
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
Bartleby Related Questions Icon

Related questions

Question
**Problem 19:** Find the distance from the point \((3, -2, 7)\) to the plane \(4x - 6y + z = 5\). Show all necessary work to receive full credit.

**Solution:**

To find the distance \(d\) from a point \((x_1, y_1, z_1)\) to a plane \(Ax + By + Cz + D = 0\), use the formula:

\[
d = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}
\]

**Given:**

- Point \((x_1, y_1, z_1) = (3, -2, 7)\)
- Plane equation \(4x - 6y + z = 5\)

First, rewrite the plane equation in the form \(Ax + By + Cz + D = 0\):

\[4x - 6y + z - 5 = 0\]

Thus,

- \(A = 4\)
- \(B = -6\)
- \(C = 1\)
- \(D = -5\)

Substitute these values into the distance formula:

\[
d = \frac{|4(3) - 6(-2) + 1(7) - 5|}{\sqrt{4^2 + (-6)^2 + 1^2}}
\]

Calculate the numerator:

\[
|4(3) - 6(-2) + 1(7) - 5| = |12 + 12 + 7 - 5| = |26|
\]

Calculate the denominator:

\[
\sqrt{4^2 + (-6)^2 + 1^2} = \sqrt{16 + 36 + 1} = \sqrt{53}
\]

Thus, the distance is:

\[
d = \frac{26}{\sqrt{53}}
\]

Therefore, the distance from the point \((3, -2, 7)\) to the plane \(4x - 6y + z = 5\) is \(\frac{26}{\sqrt{53}}\).
expand button
Transcribed Image Text:**Problem 19:** Find the distance from the point \((3, -2, 7)\) to the plane \(4x - 6y + z = 5\). Show all necessary work to receive full credit. **Solution:** To find the distance \(d\) from a point \((x_1, y_1, z_1)\) to a plane \(Ax + By + Cz + D = 0\), use the formula: \[ d = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}} \] **Given:** - Point \((x_1, y_1, z_1) = (3, -2, 7)\) - Plane equation \(4x - 6y + z = 5\) First, rewrite the plane equation in the form \(Ax + By + Cz + D = 0\): \[4x - 6y + z - 5 = 0\] Thus, - \(A = 4\) - \(B = -6\) - \(C = 1\) - \(D = -5\) Substitute these values into the distance formula: \[ d = \frac{|4(3) - 6(-2) + 1(7) - 5|}{\sqrt{4^2 + (-6)^2 + 1^2}} \] Calculate the numerator: \[ |4(3) - 6(-2) + 1(7) - 5| = |12 + 12 + 7 - 5| = |26| \] Calculate the denominator: \[ \sqrt{4^2 + (-6)^2 + 1^2} = \sqrt{16 + 36 + 1} = \sqrt{53} \] Thus, the distance is: \[ d = \frac{26}{\sqrt{53}} \] Therefore, the distance from the point \((3, -2, 7)\) to the plane \(4x - 6y + z = 5\) is \(\frac{26}{\sqrt{53}}\).
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning