16. The solution u(x, t) of the initial/boundary value problem for the heat equation B. 9 U=U₁1 u(0, t) = 0, 1 A. u(x, t) u(x, 0) = E. C. u(x, t) = = D. u(x, t) = = 1 u(x, t)=sin(2x) e-6t 3 1 0 0 u(3π, t) = 0, t> 0 1 1 sin(2x) - sin (2x) e-36 t sin (2x) e 12 t sin (2x) e³6 t 3 None of the above sin (3x), 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
16. The solution u(x, t) of the initial/boundary value problem for the heat equation
9Uxx = U₁1
u(0, t) = 0,
u(x,0) =
A. u(x, t) = sin(2x) e-36 t
-
B.
C. u(x, t) =
D.
E.
1
u(x, t)=sin(2x) e-6t
u(x, t) =
3
0<x<3 π, t> 0
u(3 π, t) = 0, t> 0
1
sin(2x) -
2
sin(3x), 0<x<3 m
12
1
sin (3x) e-81 t
sin(3x) e-9t
sin(2x) e-12t_sin(3x) e-27 t
sin(2x) e³6 t - sin(3x) e81 t
3
None of the above
is given by
Transcribed Image Text:16. The solution u(x, t) of the initial/boundary value problem for the heat equation 9Uxx = U₁1 u(0, t) = 0, u(x,0) = A. u(x, t) = sin(2x) e-36 t - B. C. u(x, t) = D. E. 1 u(x, t)=sin(2x) e-6t u(x, t) = 3 0<x<3 π, t> 0 u(3 π, t) = 0, t> 0 1 sin(2x) - 2 sin(3x), 0<x<3 m 12 1 sin (3x) e-81 t sin(3x) e-9t sin(2x) e-12t_sin(3x) e-27 t sin(2x) e³6 t - sin(3x) e81 t 3 None of the above is given by
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,