College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1) An electron is confined to a square box of length L, and the walls of that box are infinitely high. The zero-point energy (ZPE) is defined as the minimal energy that corresponds to the smallest quantum number n. What would be the length of the box L such that the ZPE of the electron located inside this box is equal to its rest mass energy mec2?arrow_forwardThe energy eigenvalues of the 1D quantum harmonic oscillator are I. nondegenerate II. positive III. integral multiples of hw O I. and II. OI. II. and III. O I. and III.arrow_forward3. Particle in a 2D Box. A quantum mechanical particle is confined in side a square 2D box, with side length L. Inside the box V=0 and outside the box V=infinity. Let the wave function to be (x,y). (a) write down the Schrodinger equation of (x,y). (b) Use the separation of variable method solve (x,y) (let the quantum numbers to be nx and ny.) (c) What is the energy for the state (nx, ny)? (d) What is the probability density p(x,y) for the state nx=3 and ny=3? Sketch this p(x,y) in a square.arrow_forward
- 1. A free electron has the wavefunction p(x, t) = sin(kx – wt) and wave number k = 50nm-1 1.1 Determine the electron's de Broglie wavelength. 1.2 Determine the electron's momentum. 1.3 Determine the electron's kinetic energy. 2. An electron is trapped in an infinite potential well of width 1 cm. For what value of n will electron have an energy of 2 eV? 3. Give the Born interpretation of the wavefunction.arrow_forward3. Prove the function y (x, y,=) = A Sin( L Sin( -)Sin( :) L, L, x, satisfies the Schrodinger's equation for a quantum dot with a width of Lx, Ly, and Lz, and the particle energies are, n. E, = 2m L L L with n,,n.,n, = 1,2,3,...arrow_forward4. Consider the two-time position correlation functions, C(t)= (X(t)x(0)), where X(t) is the position operator in the Heisenberg picture. Evaluate this function explicitly for the ground state of a one-dimensional quantum harmonic oscillator.arrow_forward
- Let Vx/312 is a nomalized wave function for 0 < x < V6L what is the probability of a particle lies between 0 < x < L? A. 3.3 %. В. 16.6% С. 25.0%. D. 100.0 %. А. В. OD.arrow_forward2. Taas, Baba A particle of mass m is confined in an infinite well potential. It is initially at some energy state Em and it transitioned back to its ground state emitting a photon with wavelength 365[nm]. If the ground state is E₁ = 1.02[eV], what is the value of Em? Em [eV]arrow_forwardThe electron moves in an infinitely deep. potential well with a width of l=0.15 nm. a) Calculate the minimum (i.e. ground state) speed of the electron. V₁=? b) Calculate the reaction force that the electron causes when it moves back and forth and collides with the other wall of the well adiabatically (thermally insulated). F=? c) Calculate the frequency of the electron's back and forth motion. f=?arrow_forward
- 1. A particle is confined to the x-axis between x = 0 and x = L. The wave function 3π of the particle is = A sin (²x) + A sin (37 x) with A E R. 4 2L a. b. C. Determine A. Determine the probability that the particle is in the interval [0,1]. J Determine (x).arrow_forwardB7arrow_forward4. Normalize the following wavefunctions 4 55 (a) v(x) = sin (#2); =sin(); for a particle in a 1D box of length L. (b) (2) = xe-z|2 (c) (x) = e(x²/a²)+(ikz) 5. In a region of space, a particle with mass m and with zero energy has a time- independent wave-function (x) = Ae-2/12, where A and L are constants. Use your knowledge of the Schrödinger equation to determine the potential energy V(x) of the particle. Plot the potential function? What is the minimum potential energy for the particle, if it is an electron and L = 1 fm? Is this potential repulsive or attractive?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON