12 + U2 + PU2 U2 <12+ P2 U1 +h+PT Ui+ PUI 12 + U2 + PU2 U2 -1 — 12 - р- 12 U1 < 0, | Ui+PUI | + <0. + (U2 – 12) 12 U2 (U1 – 1) - P U1 In this here if p e (0, 5) then 1- p > 0, U1 > 0. U2 1- P 12 Thus, we get that U1-1 = 0, U2 - 12 = 0. So, U1 = l1 and U2 = 12. The proof is completed as desired. %3D %3D
12 + U2 + PU2 U2 <12+ P2 U1 +h+PT Ui+ PUI 12 + U2 + PU2 U2 -1 — 12 - р- 12 U1 < 0, | Ui+PUI | + <0. + (U2 – 12) 12 U2 (U1 – 1) - P U1 In this here if p e (0, 5) then 1- p > 0, U1 > 0. U2 1- P 12 Thus, we get that U1-1 = 0, U2 - 12 = 0. So, U1 = l1 and U2 = 12. The proof is completed as desired. %3D %3D
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Show me the steps of deremine blue and inf is here i need evey I need all the details step by step and inf is here
Expert Solution
Step 1
GIVEN ,
=> U1+PL1/U1+U2 +PL2/ U2 L2+PU2/L2 +L1 +PU1/L1
NOW ,Taking Right side All to Left Side i.e.,
=> U1+PL1/U1+U2 +PL2/ U2 -L2-PU2/L2 -L1 -PU1/L10
=> U1 -L1 +PL1 /U1 -PU1 /L1 +U2 -L2 + PL2/ U2 -PU2/L2 0 (shifting some element towards other to get common)
HERE TAKING (U1 -L1 ) AND (U2 - L2 ) COMMON IN ABOVE EQUATION :-
=> (U1 -L1 )(1 + P (L1 /U1 - U1/L1)) + (U2 - L2 )(1+P( L2/ U2 - U2/L2)) 0
WE GET :
(U1 -L1 )(1 - P (1 /U1 + 1/L1)) + (U2 - L2 )(1-P( 1/ U2 + 1/L2)) 0 -------------(1)
Step by step
Solved in 2 steps
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,