10.0 L tank at 13.5 °C is filled with 15.4 g of dinitrogen difluoride gas and 4.72 g of sulfur tetrafluoride gas. You can assume both gases behave as ideal ases under these conditions. Calculate the mole fraction and partial pressure of each gas, and the total pressure in the tank. Round each of your answers to 3 significant digits. mole fraction: dinitrogen difluoride partial pressure: ? atm mole fraction: sulfur tetrafluoride partial pressure: atm Total pressure in tank: atm O

Chemistry by OpenStax (2015-05-04)
1st Edition
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Chapter9: Gases
Section: Chapter Questions
Problem 101E: Under which of the following sets of conditions does a real gas behave most like an ideal gas, and...
icon
Related questions
Question
A 10.0 L tank at 13.5 °C is filled with 15.4 g of dinitrogen difluoride gas and 4.72 g of sulfur tetrafluoride gas. You can assume both gases behave as ideal
gases under these conditions.
Calculate the mole fraction and partial pressure of each gas, and the total pressure in the tank. Round each of your answers to 3 significant digits.
mole fraction:
dinitrogen difluoride
partial pressure:
atm
mole fraction:
sulfur tetrafluoride
partial pressure:
|| atm
Total pressure in tank:
atm
Transcribed Image Text:A 10.0 L tank at 13.5 °C is filled with 15.4 g of dinitrogen difluoride gas and 4.72 g of sulfur tetrafluoride gas. You can assume both gases behave as ideal gases under these conditions. Calculate the mole fraction and partial pressure of each gas, and the total pressure in the tank. Round each of your answers to 3 significant digits. mole fraction: dinitrogen difluoride partial pressure: atm mole fraction: sulfur tetrafluoride partial pressure: || atm Total pressure in tank: atm
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps

Blurred answer
Knowledge Booster
Mole Concept
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry by OpenStax (2015-05-04)
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:
9781938168390
Author:
Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:
OpenStax
Chemistry for Engineering Students
Chemistry for Engineering Students
Chemistry
ISBN:
9781337398909
Author:
Lawrence S. Brown, Tom Holme
Publisher:
Cengage Learning
Physical Chemistry
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
World of Chemistry, 3rd edition
World of Chemistry, 3rd edition
Chemistry
ISBN:
9781133109655
Author:
Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:
Brooks / Cole / Cengage Learning