College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
1.Two shuffle board disks of equal mass, one orange and the other yellow are involved in an elastic, glancing collision. The yellow disk is initially at rest and is struck by the orange disk moving with a speed of 4m/s. After the collision, the orange disk moves along a direction that makes an angle of 73° with its initial direction motion. The velocities of the two disks are perpendicular after the collision. Determine the final speed of each disk.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A truck with a mass of 1320 kg and moving with a speed of 12.0 m/s rear-ends a 703 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision in meters per second. V car m/s %3D Vtruck m/s Additional Materialsarrow_forward5. The figure shows three balls of clay moving on a frictionless horizontal surface just before a collision. The three collide simultaneously and stick together. Find the speed and direction of the blob of clay after the collision. Draw the blob after the collision and show its velocity vector. 40 g 45° 4.0 m/s 3.0 m/s 30 g 2.0 m/s 20 garrow_forward(Please include diagram or drawing) Two clay meteors, each with a mass m, collide in outer space and stick together. This collision occurs at a distance D from the center of the Earth. Following the collision, the combined meteors move towards the Earth. Before the collision: Meteor 1 has a velocity v1. Meteor 2 has a velocity v2. The velocities V1 and v2 are at right angles to each other. a) Calculate the fraction of kinetic energy lost during the collision of the two meteors. b) Determine the velocity of the stuck-together meteors just before they crash into the Earth assuming you know the mass and radius of earth. Air resistance can be neglected.arrow_forward
- 1. In an experiment, you throw a rubber ball of mass m = 25.0 g onto a block of mass M = 250 g that is initially at rest at the edge of a table of height h = 0.98 m. (Figure) The ball bounces back with a speed of 1.01 m/s, and the block eventually lands at d = 1.02 m from the bottom of the table. What is the speed of the ball, right before it hits the block?arrow_forwardA child sleds down a hill and collides at 5.6 m/s into a stationary sled that is identical to his. The child is launched forward at the same speed, leaving behind the two sleds that lock together and slide forward more slowly. What is the speed of the two sleds after this collision?arrow_forwardTwo bumper cars at the county fair are sliding toward one another (see figure below). Initially, bumper car 1 is traveling to the east at 5.70 m/s, and bumper car 2 is traveling 79.1° south of west at 4.25 m/s. They collide and stick together, as the driver of one car reaches out and grabs hold of the other driver. The two bumper cars move off together after the collision, and friction is negligible between the cars and the ground. W-OE Car 2 Car 1 Vii (a) If the masses of bumper cars 1 and 2 are 596 kg and 625 kg respectively, what is the velocity of the bumper cars immediately after the collision? magnitude m/s direction ° east of south (b) What is the kinetic energy lost in the collision?arrow_forward
- A ball of mass 0.305 kg that is moving with a speed of 5.8 m/s collides head-on and elastically with another ball initially at rest. Immediately after the collision, the incoming ball bounces backward with a speed of 3.2 m/s. ▼ Part A Calculate the velocity of the target ball after the collision. Express your answer to two significant figures and include the appropriate units. = μᾶ Part B Value Units Submit Request Answer ? Calculate the mass of the target ball. Express your answer to two significant figures and include the appropriate units.arrow_forwardm2 m h=7.0m ☐ Figure 1: Diagram for Problem 15 15) During a test investigation, a 40-gram bullet is fired towards a stationary block of 1.0-kg mass causing a perfectly in-elastic collision. After the collision, the block-bullet system slides up a smooth ramp, eventually coming to rest at an elevation of 7.0 meters. Calculate the speed of the bullet. Must show all steps including the equations being used.arrow_forwardTwo bumper cars at the county fair are sliding toward one another (see figure below). Initially, bumper car 1 is traveling to the east at 5.90 m/s, and bumper car 2 is traveling 79.0° south of west at 4.15 m/s. They collide and stick together, as the driver of one car reaches out and grabs hold of the other driver. The two bumper cars move off together after the collision, and friction is negligible between the cars and the ground. N W-O»E Car 2 Car 1 Vii (a) If the masses of bumper cars 1 and 2 are 596 kg and 625 kg respectively, what is the velocity of the bumper cars immediately after the collision? magnitude m/s direction ° east of south (b) What is the kinetic energy lost in the collision?arrow_forward
- A 1500kg sport car is moving westbound at 20m/s on a level road when it collided with a 4000kg truck driving east on the same road at 15m/s. The two vehicles remain locked together after the collision. a)what are is the magnitude of the velocity of the two vehicles just after the collision?arrow_forward1. A firecracker travels straight up at 75.0m/s and explodes into two pieces. The smaller piece carries one third of the firecracker's mass and shoots off horizontally at 48.0m/s west. Determine the speed and direction of the other piece directly after the explosion. 2. Three blocks slide on a smooth surface. Initially, the first block (m1=1.0kg) moves at 3.0m/s to the right, the second block (m2=2.0kg) is at rest, and the third block (m3=3.0kg) moves to the left at 0.50m/s. First, m1 collides elastically with m2 and recoils to the left. Afterwards, m2 and m3 collide and stick. Calculate, a. the velocities of m1 and m2 after the first collision. b. the velocity of m2 and m3 after the second collision.arrow_forward云 HI 5 F. %24 -10 Part A Jeanette is playing in a 9-ball pool tournament. She will win if she sinks the 9-ball from the final rack, so she needs to line up her shot precisely. Both the cue ball and the 9-ball have mass m, and the cue ball is hit at an initial speed of v. Jeanette carefully hits the cue ball into the 9-ball off center, so that when the balls collide, they move away from each other at the same angle 0 from the direction in which the cue ball was originally traveling (see figure). Furthermore, after the collision, the cue ball moves away at speed vf, while the 9-ball moves at speed vp. (Figure 1) Find the angle 0 that the 9-ball travels away from the horizontal, as shown in the figure. Express your answer in degrees to three significant figures. > View Available Hint(s) For the purposes of this problem, assume that the collision is perfectly elastic, neglect friction, and ignore the spinning of the balls. Submit Provide Feedback Figure 1 of 1 MacBook Air 08 F3 O00 000 F2…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON