Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN: 9781133382119
Author: Swokowski
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Question
Answer only question six and it's a applied discrete mathematics question
![1.
one has
2.
3.
4.
Let Dn be the number of derangements of [n]. Prove that for n ≥ 1
Dn=nDn−1 + (−1)”.
The generating function of the sequence (an)n is
f(x)=
=
Use it to find a formula for an
X
(1-x)2(13x)
Use the recurrence relation from Problem 1 to find the exponential
generating function for the sequence (Dn)n. Recall that Do = 1.
The following table gives the values of pk (n), the number of integer
partitions of n into exactly k parts. Complete the 8th row and use it to find
p(8), the number of integer partitions of 8.
k
1
3
4
5
6
7
8
n
1
1
0
0
0
0
0
0
2
1
1
0
0
0
0
0
3
1
1
1
0
0
0
0
0
4
1
2
1
0
0
0
0
5
1
2
2
1
1
0
6
1
3
3
2
1
1
0
0
7
1
3
4
3
2
1
1
0
8
5.
Consider the sequence (hn)n defined recursively as follows
6.
ho = 1
h₁
=
2
hn=3hn-1+4hn-2 n ≥ 2.
Find the generating function of this sequence.
Consider the sequence (An)n defined recursively as follows
Ao
=
[An+1 ¦
1
=
n
Ai
Σ
n ≥ 0.
(n - i)!'
i=0
Find the generating function of this sequence.](https://content.bartleby.com/qna-images/question/ed04f254-2b14-4f51-a897-ea8ba8024a7a/57b0f06c-1d64-4e35-a165-e8a273640f2c/c5o25vb_thumbnail.jpeg)
Transcribed Image Text:1.
one has
2.
3.
4.
Let Dn be the number of derangements of [n]. Prove that for n ≥ 1
Dn=nDn−1 + (−1)”.
The generating function of the sequence (an)n is
f(x)=
=
Use it to find a formula for an
X
(1-x)2(13x)
Use the recurrence relation from Problem 1 to find the exponential
generating function for the sequence (Dn)n. Recall that Do = 1.
The following table gives the values of pk (n), the number of integer
partitions of n into exactly k parts. Complete the 8th row and use it to find
p(8), the number of integer partitions of 8.
k
1
3
4
5
6
7
8
n
1
1
0
0
0
0
0
0
2
1
1
0
0
0
0
0
3
1
1
1
0
0
0
0
0
4
1
2
1
0
0
0
0
5
1
2
2
1
1
0
6
1
3
3
2
1
1
0
0
7
1
3
4
3
2
1
1
0
8
5.
Consider the sequence (hn)n defined recursively as follows
6.
ho = 1
h₁
=
2
hn=3hn-1+4hn-2 n ≥ 2.
Find the generating function of this sequence.
Consider the sequence (An)n defined recursively as follows
Ao
=
[An+1 ¦
1
=
n
Ai
Σ
n ≥ 0.
(n - i)!'
i=0
Find the generating function of this sequence.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 4 images

Knowledge Booster
Similar questions
- Repeat Example 5 when microphone A receives the sound 4 seconds before microphone B.arrow_forwardIf In z + ln(z - 5) - In(32), then I =arrow_forwardSuppose that 40 deer are introduced in a protected area. The population of the herd P can be modeled by P = 40 + 20x / 1 + .05x where x is the time in years since introducing the deer. Determine the time required for the deer population to reach 200.arrow_forward
- 6. Determine the equation for the following exponential function in the form of f(x)=ab*+ c. Show all your steps. (0, 3) -2 1- (2,0) -3 -2 -1 3 -1- -3- 2.arrow_forwardThe equation for an exponential function is w(x) = 7 ⋅ (1.25) + 6. Which statement correctly describes the end behavior of the function? As x → ∞, w(x) → 6, and as x → ∞, W(x) → ∞ As x→→∞, w(x) → 7, and as x → ∞, W(x) - →∞. As x→ ∞, w(x) → ∞, and as X → ∞, w(x) → 7. As x→ ∞, w(x) → ∞, and as x → ∞, w(x) →→ 6.arrow_forwardOn June 25, 2020, North Carolina reported 1009 new CoVID-19 cases.On July 14th, 2020, North Carolina reported 1956 new cases. If weassume that the growth is exponential, find the function that modelsthe number of new cases as a function of t, the number of days sinceJune 25. (Note, July 14th is t=19.) If this growth continues, how manynew cases would there be in 60 days?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning

Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
