1. It is said that Hilbert once illustrated his contention that the undefined terms in a geometry should not have any inherent meaning by claiming that it should be possible to replace point by beer mug and line by table in the statements of the axioms. Consider three friends sitting around one table. Each person has one beer mug. At the moment all the beer mugs are resting on the table. Suppose we interpret point to mean beer mug, line to mean the table, and lie on to mean resting on. Is this a model for incidence geometry? Explain. Is this interpretation isomorphic to any of the examples in the text?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Question 1

At this point you might be asking yourself why it would be thought desirable to make
mathematics so abstract and therefore to get into the kind of difficult issues that have been
raised here. That is one question we can answer. The answer is that abstraction is precisely
what gives mathematics its power. By identifying certain key features in a given situation,
listing exactly what it is about those features that is to be studied, and then studying them
in an abstract setting detached from the original context, we are able to see that the same
kinds of relationships hold in many apparently different contexts. We are able to study
the important relationships in the abstract without a lot of other irrelevant information
cluttering up the picture and obscuring the underlying structure. Once things have been
clarified in this way, the kind of logical reasoning that characterizes mathematics becomes
an incredibly powerful and effective tool. The history of mathematics is full of examples
of surprising practical applications of mathematical ideas that were originally discovered
and developed by people who were completely unaware of the eventual applications.
RCISES 2.4
1. It is said that Hilbert once illustrated his contention that the undefined terms in a
geometry should not have any inherent meaning by claiming that it should be possible
to replace point by beer mug and line by table in the statements of the axioms. Consider
three friends sitting around one table. Each person has one beer mug. At the moment
all the beer mugs are resting on the table. Suppose we interpret point to mean beer
mug, line to mean the table, and lie on to mean resting on. Is this a model for incidence
geometry? Explain. Is this interpretation isomorphic to any of the examples in the text?
2. One-point geometry contains just one point and no line. Which incidence axioms
does one-point geometry satisfy? Explain. Which parallel postulates does one-point
geometry satisfy? Explain.
3. Consider a small mathematics department consisting of Professors Alexander, Bailey,
Curtis, and Dudley with three committees: curriculum committee, personnel committee,
and social committee. Interpret point to mean a member of the department, interpret
line to be a departmental committee, and interpret lie on to mean that the faculty
member is a member of the specified committee.
(a) Suppose the committee memberships are as follows: Alexander, Bailey, and Curtis
are on the curriculum committee; Alexander and Dudley are on the personnel
Chapter 2
Axiomatic Systems and Incidence Geometry
committee; and Bailey and Curtis are on the social committee. Is this a model for
Incidence Geometry? Explain.
(b) Suppose the committee memberships are as follows: Alexander, Bailey and Curtis
are on the curriculum committee; Alexander and Dudley are on the personnel
committee; and Bailey and Dudley are on the social committee. Is this a model for
incidence geometry? Explain.
(c) Suppose the committee memberships are as follows: Alexander and Bailey are on
the curriculum committee, Alexander and Curtis are on the personnel committee,
and Dudley and Curtis are on the social committee. Is this a model for incidence
geometry? Explain.
4. A three-point geometry is an incidence geometry that satisfies the following additional
axiom: There exist exactly three points.
(a) Find a model for three-point geometry.
(b) How many lines does any model for three-point geometry contain? Explain.
(c) Explain why any two models for three-point geometry must be isomorphic. (An
axiomatic system with this property is said to be categorical.)
5. Interpret point to mean one of the four vertices of a square, line to mean one of the
sides of the square, and lie on to mean that the vertex is an endpoint of the side. Which
incidence axioms hold in this interpretation? Which parallel postulates hold in this
interpretation?
6. Draw a schematic diagram of five-point geometry (see Example 2.2.5).
7. Which parallel postulate does Fano's geometry satisfy? Explain.
8. Which parallel postulate does the three-point line satisfy? Explain.
9. Under what conditions could a geometry satisfy more than one of the parallel postulates?
Explain. Could an incidence geometry satisfy more than one of the parallel postulates?
Explain.
10. Consider a finite model for incidence geometry that satisfies the following additional
axiom: Every line has exactly three points lying on it. What is the minimum number of
points in such a geometry? Explain your reasoning.
11. Find a finite model for Incidence Geometry in which there is one line that has exactly
three points lying on it and there are other lines that have exactly two points lying on
them.
12. Find interpretations for the words point, line, and lie on that satisfy the following
conditions.
(a) Incidence Axioms 1 and 2 hold, but Incidence Axiom 3 does not.
(b) Incidence Axioms 2 and 3 hold, but Incidence Axiom 1 does not.
--:----- 1 .-d 2 Lald ..4 L .
A --:----
24
Transcribed Image Text:At this point you might be asking yourself why it would be thought desirable to make mathematics so abstract and therefore to get into the kind of difficult issues that have been raised here. That is one question we can answer. The answer is that abstraction is precisely what gives mathematics its power. By identifying certain key features in a given situation, listing exactly what it is about those features that is to be studied, and then studying them in an abstract setting detached from the original context, we are able to see that the same kinds of relationships hold in many apparently different contexts. We are able to study the important relationships in the abstract without a lot of other irrelevant information cluttering up the picture and obscuring the underlying structure. Once things have been clarified in this way, the kind of logical reasoning that characterizes mathematics becomes an incredibly powerful and effective tool. The history of mathematics is full of examples of surprising practical applications of mathematical ideas that were originally discovered and developed by people who were completely unaware of the eventual applications. RCISES 2.4 1. It is said that Hilbert once illustrated his contention that the undefined terms in a geometry should not have any inherent meaning by claiming that it should be possible to replace point by beer mug and line by table in the statements of the axioms. Consider three friends sitting around one table. Each person has one beer mug. At the moment all the beer mugs are resting on the table. Suppose we interpret point to mean beer mug, line to mean the table, and lie on to mean resting on. Is this a model for incidence geometry? Explain. Is this interpretation isomorphic to any of the examples in the text? 2. One-point geometry contains just one point and no line. Which incidence axioms does one-point geometry satisfy? Explain. Which parallel postulates does one-point geometry satisfy? Explain. 3. Consider a small mathematics department consisting of Professors Alexander, Bailey, Curtis, and Dudley with three committees: curriculum committee, personnel committee, and social committee. Interpret point to mean a member of the department, interpret line to be a departmental committee, and interpret lie on to mean that the faculty member is a member of the specified committee. (a) Suppose the committee memberships are as follows: Alexander, Bailey, and Curtis are on the curriculum committee; Alexander and Dudley are on the personnel Chapter 2 Axiomatic Systems and Incidence Geometry committee; and Bailey and Curtis are on the social committee. Is this a model for Incidence Geometry? Explain. (b) Suppose the committee memberships are as follows: Alexander, Bailey and Curtis are on the curriculum committee; Alexander and Dudley are on the personnel committee; and Bailey and Dudley are on the social committee. Is this a model for incidence geometry? Explain. (c) Suppose the committee memberships are as follows: Alexander and Bailey are on the curriculum committee, Alexander and Curtis are on the personnel committee, and Dudley and Curtis are on the social committee. Is this a model for incidence geometry? Explain. 4. A three-point geometry is an incidence geometry that satisfies the following additional axiom: There exist exactly three points. (a) Find a model for three-point geometry. (b) How many lines does any model for three-point geometry contain? Explain. (c) Explain why any two models for three-point geometry must be isomorphic. (An axiomatic system with this property is said to be categorical.) 5. Interpret point to mean one of the four vertices of a square, line to mean one of the sides of the square, and lie on to mean that the vertex is an endpoint of the side. Which incidence axioms hold in this interpretation? Which parallel postulates hold in this interpretation? 6. Draw a schematic diagram of five-point geometry (see Example 2.2.5). 7. Which parallel postulate does Fano's geometry satisfy? Explain. 8. Which parallel postulate does the three-point line satisfy? Explain. 9. Under what conditions could a geometry satisfy more than one of the parallel postulates? Explain. Could an incidence geometry satisfy more than one of the parallel postulates? Explain. 10. Consider a finite model for incidence geometry that satisfies the following additional axiom: Every line has exactly three points lying on it. What is the minimum number of points in such a geometry? Explain your reasoning. 11. Find a finite model for Incidence Geometry in which there is one line that has exactly three points lying on it and there are other lines that have exactly two points lying on them. 12. Find interpretations for the words point, line, and lie on that satisfy the following conditions. (a) Incidence Axioms 1 and 2 hold, but Incidence Axiom 3 does not. (b) Incidence Axioms 2 and 3 hold, but Incidence Axiom 1 does not. --:----- 1 .-d 2 Lald ..4 L . A --:---- 24
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,