Bartleby Related Questions Icon

Related questions

Question
The eigenvectors in position space (spherical coordinates) of the Hamiltonian operator **H** that represent the hydrogen atom system are very complicated:

\[
\langle r\theta\phi | E_{nlm} \rangle = \sqrt{\left(\frac{2}{na}\right)^3 \frac{(n-l-1)!}{2n(n+l)!}} e^{-r/(na)} \left(\frac{2r}{na}\right)^l \left\{L_{n-l-1}^{2l+1}\left[\frac{2r}{(na)}\right]\right\}Y_l^m (\theta, \phi)
\]

where the integers:

- \( n = 1, 2, \ldots, \infty \)
- \( l = 0, 1, \ldots, n-1 \)
- \( -l \le m \le l \),

The value \( a = 0.529 \times 10^{-10} \) m is known as the Bohr radius. The associated Laguerre polynomial is:

\[
L_q^p(x) = (-1)^p \left(\frac{d}{dx}\right)^p L_{p+q}(x)
\]

where

\[
L_q(x) = \frac{e^x}{q!} \left(\frac{d}{dx}\right)^q \left(e^{-x}x^q\right),
\]

and the spherical harmonic function:

\[
Y_l^m (\theta, \phi) = \varepsilon \sqrt{\frac{(2l+1)(l-|m|)!}{4\pi(l+|m|)!}} e^{im\phi} P_l^m(\cos \theta)
\]

where

\[
\varepsilon = \begin{cases} 
(-1)^m, & m \ge 0 \\
1, & m < 0 \\
\end{cases},
\]

\[
P_l^m(x) = (1-x^2)^{|m|/2} \left(\frac{d}{dx}\right)^{|m|} P_l(x),
\]

and

\[
P_l(x) = \frac{1}{2^l l!} \left(\frac{d}{dx}\right)^l (x^2
expand button
Transcribed Image Text:The eigenvectors in position space (spherical coordinates) of the Hamiltonian operator **H** that represent the hydrogen atom system are very complicated: \[ \langle r\theta\phi | E_{nlm} \rangle = \sqrt{\left(\frac{2}{na}\right)^3 \frac{(n-l-1)!}{2n(n+l)!}} e^{-r/(na)} \left(\frac{2r}{na}\right)^l \left\{L_{n-l-1}^{2l+1}\left[\frac{2r}{(na)}\right]\right\}Y_l^m (\theta, \phi) \] where the integers: - \( n = 1, 2, \ldots, \infty \) - \( l = 0, 1, \ldots, n-1 \) - \( -l \le m \le l \), The value \( a = 0.529 \times 10^{-10} \) m is known as the Bohr radius. The associated Laguerre polynomial is: \[ L_q^p(x) = (-1)^p \left(\frac{d}{dx}\right)^p L_{p+q}(x) \] where \[ L_q(x) = \frac{e^x}{q!} \left(\frac{d}{dx}\right)^q \left(e^{-x}x^q\right), \] and the spherical harmonic function: \[ Y_l^m (\theta, \phi) = \varepsilon \sqrt{\frac{(2l+1)(l-|m|)!}{4\pi(l+|m|)!}} e^{im\phi} P_l^m(\cos \theta) \] where \[ \varepsilon = \begin{cases} (-1)^m, & m \ge 0 \\ 1, & m < 0 \\ \end{cases}, \] \[ P_l^m(x) = (1-x^2)^{|m|/2} \left(\frac{d}{dx}\right)^{|m|} P_l(x), \] and \[ P_l(x) = \frac{1}{2^l l!} \left(\frac{d}{dx}\right)^l (x^2
**Instructions:**

1. Determine \(\langle r\theta\phi | E_{3,2,-1} \rangle\) using the above information.

2. Show that your solution is normalized, i.e.,

   \[
   \iiint \langle r\theta\phi | E_{3,2,-1} \rangle \langle E_{3,2,-1} | r\theta\phi \rangle r^2 \sin\theta \, dr \, d\theta \, d\phi 
   \]

   where \( r \) is integrated from 0 to \(\infty\), \(\theta\) from 0 to \(\pi\), and \(\phi\) from 0 to \(2\pi\).
expand button
Transcribed Image Text:**Instructions:** 1. Determine \(\langle r\theta\phi | E_{3,2,-1} \rangle\) using the above information. 2. Show that your solution is normalized, i.e., \[ \iiint \langle r\theta\phi | E_{3,2,-1} \rangle \langle E_{3,2,-1} | r\theta\phi \rangle r^2 \sin\theta \, dr \, d\theta \, d\phi \] where \( r \) is integrated from 0 to \(\infty\), \(\theta\) from 0 to \(\pi\), and \(\phi\) from 0 to \(2\pi\).
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Similar questions