1. Design and implement an application that reads an integer value representing a year input by the user. The purpose of the program is to determine if the year is a leap year (and therefore has 29 days in February) in the Gregorian calendar. A year is a leap year if it is divisible by 4, unless it is also divisible by 100 but not 400. For example, the year 2003 is not a leap year, but 2004 is. The year 1900 is not a leap year because it is divisible by 100, but the year 2000 is a leap year because even though it is divisible by 100, it is also divisible by 400. Produce an error message for any input value less than 1582 (the year the Gregorian calendar was adopted). 2. Modify the solution to the previous project (i.e., Leap year) so that the user can evaluate multiple years. Allow the user to terminate the program using an appropriate sentinel value. Validate each input value to ensure it is greater than or equal to 1582.
1. Design and implement an application that reads an integer value representing a year input by the user. The purpose of the program is to determine if the year is a leap year (and therefore has 29 days in February) in the Gregorian calendar. A year is a leap year if it is divisible by 4, unless it is also divisible by 100 but not 400. For example, the year 2003 is not a leap year, but 2004 is. The year 1900 is not a leap year because it is divisible by 100, but the year 2000 is a leap year because even though it is divisible by 100, it is also divisible by 400. Produce an error message for any input value less than 1582 (the year the Gregorian calendar was adopted).
2. Modify the solution to the previous project (i.e., Leap year) so that the user can evaluate multiple years. Allow the user to terminate the program using an appropriate sentinel value. Validate each input value to ensure it is greater than or equal to 1582.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images