1. (a) What is the intensity in W/m² of a laser beam used to burn away cancerous tissue that, when 90.0% absorbed, puts 650 J of energy into a circular spot 1.9 mm in diameter in 4 s? Hint: The laser is a collimated beam of light and does not produce a spherical wave. W/m² (b) Reflect on how this intensity compares to the average intensity of sunlight (about 1W/m²) and the implications that would have if the laser beam entered your eye. Note how your answer depends on the time duration of the exposure. The intensity of a laser is about be very damaging if they enter your eye. ✓times that of the sun, so clearly lasers can

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
1. (a) What is the intensity in W/m² of a laser beam used to burn away cancerous tissue that, when
90.0% absorbed, puts 650 J of energy into a circular spot 1.9 mm in diameter in 4 s?
Hint: The laser is a collimated beam of light and does not produce a spherical wave.
W/m²
(b) Reflect on how this intensity compares to the average intensity of sunlight (about 1W/m²) and the
implications that would have if the laser beam entered your eye. Note how your answer depends on
the time duration of the exposure.
The intensity of a laser is about
be very damaging if they enter your eye.
✓times that of the sun, so clearly lasers can
Transcribed Image Text:1. (a) What is the intensity in W/m² of a laser beam used to burn away cancerous tissue that, when 90.0% absorbed, puts 650 J of energy into a circular spot 1.9 mm in diameter in 4 s? Hint: The laser is a collimated beam of light and does not produce a spherical wave. W/m² (b) Reflect on how this intensity compares to the average intensity of sunlight (about 1W/m²) and the implications that would have if the laser beam entered your eye. Note how your answer depends on the time duration of the exposure. The intensity of a laser is about be very damaging if they enter your eye. ✓times that of the sun, so clearly lasers can
Expert Solution
steps

Step by step

Solved in 4 steps with 21 images

Blurred answer
Knowledge Booster
Electromagnetic waves
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON