Concept explainers
A uniform 22 kg beam, 3.0 m long, is attached to a wall on the left by a hinge, and is supported by a cable on its right end. A 13 kg monkey hangs from the beam, 1.0 m from the left end.
a) Determine the tension in the cable.
b) Determine the magnitude of the force due to the hinge on the beam.
Torque acting on an object is defined as the product of perpendicular force to the distance from the pivot point , that is , .
Let the hinge point be the pivot point , so the torques are due to the tension force acting in the anti-clockwise direction , which is , acting at a distance from the pivot point , the weight force of the beam acting clockwise direction , which is , acting at a distance from the pivot point and the weight force of the monkey acting clockwise direction , which is , acting at a distance from the pivot point . As the system is at equilibrium , the net torque will be zero , that is , , where is the mass of beam , is the mass of monkey and is the acceleration due to gravity .
The horizontal forces acting are the horizontal component of hinge force which is and the the horizontal component of tension force , which is , . As the system is at equilibrium , the relation will be .
Trending nowThis is a popular solution!
Step by stepSolved in 6 steps
- One end of a uniform 4.30-m-long rod of weight F is supported by a cable at an angle of = 37° with the rod. The other end rests against the wall, where it is held by friction as shown in the figure below. The coefficient of static friction between the wall and the rod is μ = 0.460. Determine the minimum distance x from point A at which an additional object, also with the same weight For can be hung without causing the rod to slip at point A. m 0 B ✪arrow_forwardOne end of a uniform 4.10-m-long rod of weight Fg is supported by a cable at an angle of ? = 37° with the rod. The other end rests against the wall, where it is held by friction as shown in the figure below. The coefficient of static friction between the wall and the rod is ?s = 0.480. Determine the minimum distance x from point A at which an additional object, also with the same weight Fg, can be hung without causing the rod to slip at point A. ------marrow_forwardA 12 000-N shark is supported by a rope attached to a 4.60-m rod that can pivot at the base. (a) Calculate the tension in the cable between the rod and the wall, assuming the cable is holding the system in the position shown in the figure. (Give you answer to three significant digits.) b) Find the horizontal force exerted on the base of the rod magnitude ------- N c) Find the vertical force exerted on the base of the rod. Ignore the weight of the rod. magnitude ------ Narrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON