1. A thin pole of length L = 3 m and mass 6 kg is being raised by a rope of tension 80 Newtons as shown. The left end of the pole can rotate about a pivot attached to the wall. Determine the magnitude and direction of the angular acceleration of the pole. The general steps in applying the rotational 2nd law are given below. a. Draw an extended free body diagram showing the forces on the rod and where they act. • The weight acts at the center of mass. • There must be a force at the pivot that holds that end in place. b. Determine the torque generated by each force on your FBD. Sum the torques to get the left-hand side (LHS) of the rotational 2nd law. C. Determine the moment of inertia of the pole. FBD 30° T d. Apply the rotational 2nd law to determine the magnitude and direction of angular acceleration of the pole.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
1. A thin pole of length L = 3 m and mass 6 kg is being raised by a rope of tension
80 Newtons as shown. The left end of the pole can rotate about a pivot
attached to the wall. Determine the magnitude and direction of the angular
acceleration of the pole.
The general steps in applying the rotational 2nd law are given below.
a. Draw an extended free body diagram showing the forces on the rod and
where they act.
• The weight acts at the center of mass.
• There must be a force at the pivot that holds that end in place.
b. Determine the torque generated by each force on your FBD. Sum the
torques to get the left-hand side (LHS) of the rotational 2nd law.
C. Determine the moment of inertia of the pole.
FBD
30°
T
d. Apply the rotational 2nd law to determine the magnitude and direction of angular acceleration of the pole.
Transcribed Image Text:1. A thin pole of length L = 3 m and mass 6 kg is being raised by a rope of tension 80 Newtons as shown. The left end of the pole can rotate about a pivot attached to the wall. Determine the magnitude and direction of the angular acceleration of the pole. The general steps in applying the rotational 2nd law are given below. a. Draw an extended free body diagram showing the forces on the rod and where they act. • The weight acts at the center of mass. • There must be a force at the pivot that holds that end in place. b. Determine the torque generated by each force on your FBD. Sum the torques to get the left-hand side (LHS) of the rotational 2nd law. C. Determine the moment of inertia of the pole. FBD 30° T d. Apply the rotational 2nd law to determine the magnitude and direction of angular acceleration of the pole.
Expert Solution
steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Knowledge Booster
Axial Load
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY