1. A gas within a piston-cylinder assembly undergoes a thermodynamic cycle consisting of three processes: Process 1-2: Compression with PV = constant, from P₁ = 1 bar, V₁ = 2 m³ to V₂ = 0.2 m³, U₂ - U₁ = 100 kJ; Process 2-3: Constant volume to P3 = P₁; Process 3-1: Constant-pressure and adiabatic process. Neglect the changes of kinetic and potential energy in all three processes. (a) Sketch the cycle on a P-V diagram; (b) Determine the net work (i.e., W₁2+ W23+ W31) of the cycle, in kJ; (c) Determine the heat transfer for process 2-3, in kJ. Hint: System's state variables remain unchanged after a cycle, i.e. (U₂− U₁) + (U3-U₂) + (U₁-U3) = 0

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
1.
A gas within a piston-cylinder assembly undergoes a thermodynamic cycle consisting of three processes:
Process 1-2: Compression with PV = constant, from P₁ = 1 bar, V₁ = 2 m³ to V₂ = 0.2 m³, U₂ − U₁ = 100 kJ;
2
Process 2-3: Constant volume to P3 = P₁;
Process 3-1: Constant-pressure and adiabatic process.
Neglect the changes of kinetic and potential energy in all three processes.
(a) Sketch the cycle on a P-V diagram;
(b) Determine the net work (i.e., W12 + W23 + W31) of the cycle, in kJ;
(c) Determine the heat transfer for process 2-3, in kJ.
Hint: System's state variables remain unchanged after a cycle, i.e. (U₂ − U₁) + (U3 − U₂) + (U₁ − U3) = 0
Transcribed Image Text:1. A gas within a piston-cylinder assembly undergoes a thermodynamic cycle consisting of three processes: Process 1-2: Compression with PV = constant, from P₁ = 1 bar, V₁ = 2 m³ to V₂ = 0.2 m³, U₂ − U₁ = 100 kJ; 2 Process 2-3: Constant volume to P3 = P₁; Process 3-1: Constant-pressure and adiabatic process. Neglect the changes of kinetic and potential energy in all three processes. (a) Sketch the cycle on a P-V diagram; (b) Determine the net work (i.e., W12 + W23 + W31) of the cycle, in kJ; (c) Determine the heat transfer for process 2-3, in kJ. Hint: System's state variables remain unchanged after a cycle, i.e. (U₂ − U₁) + (U3 − U₂) + (U₁ − U3) = 0
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 7 images

Blurred answer
Knowledge Booster
Work and Heat
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY