1. A circular aluminium tube of length L = 400 mm is loaded in compression by the force P. The outside and inside diameters are 60 mm and 50 mm, respectively. A strain gage is placed on the outside of the bar to measure normal strains in the longitudinal direction. 1.1 If the measured strain is ε = 550 x 10-6, what is the shortening δ of the bar? 1.2 If the compressive stress in the bar is intended to be 40 MPa, what should be the load P? 2. A cylindrical vessel has an internal diameter of 2 m. It is made of 15 mm thick plate. The efficiency of the longitudinal and circumferential joints are 80 % and 60 % respectively. If the ultimate tensile stress for the material is 500 MPa and the factor of safety is 6, determine the safe internal pressure to which the vessel may be subjected.

Mechanics of Materials (MindTap Course List)
9th Edition
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Barry J. Goodno, James M. Gere
Chapter7: Analysis Of Stress And Strain
Section: Chapter Questions
Problem 7.7.26P: - 7.2-26 The strains on the surface of an experiment al device made of pure aluminum (E = 70 GPa. v...
icon
Related questions
Question
1. A circular aluminium tube of length L = 400 mm is loaded in compression by the force P. The outside and inside diameters are 60 mm and 50 mm, respectively. A strain gage is placed on the outside of the bar to measure normal strains in the longitudinal direction. 1.1 If the measured strain is ε = 550 x 10-6, what is the shortening δ of the bar? 1.2 If the compressive stress in the bar is intended to be 40 MPa, what should be the load P? 2. A cylindrical vessel has an internal diameter of 2 m. It is made of 15 mm thick plate. The efficiency of the longitudinal and circumferential joints are 80 % and 60 % respectively. If the ultimate tensile stress for the material is 500 MPa and the factor of safety is 6, determine the safe internal pressure to which the vessel may be subjected.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Strain Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning