Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN: 9780133923605
Author: Robert L. Boylestad
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Attampet with only two: 1: Prove that the dynamic resistance of diode is ra=26mv/Ip. 2:Prove that the ripple voltage of HWR is Viru=V+Vde and the ripple factor of HWR 121%, u=40.5%. 3: Using silicon diode design a clamper that will produce output V-20Sin wt+10 (v) when the input voltage is Vo=20Sin wt-10 (V).Draw the circuit diagram and the input and output signals. 4:The 6-V zener diode has a maximum rated power dissipated of 690 mw.Its reveres current must be at least 3mA to keep it in breakdown. Find a suitable value for Rs if V; can vary from 9v to 12v and Ri. can vary from 5000 to 1.2KO.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Determine which diodes are forward-biased and which are reverse-biased in the configurations.. Assuming a 0.7-V drop across each forward-biased diode, determine the output voltage.arrow_forwardGiven the following circuit with VDD= 9.2 V, R=2.3 k2, then the current Iis: Use the CVD model for the diode, with VD = 0.65 V. I VDD a. 0.004000 A O b. 3.717391 A OC. 0 A d. 4.000000 A e. 0.003717 A R + VD -arrow_forwardConsider a junction diode has dc biased current at operating point ID=0.8 mA. A sinusoidal voltage is superimposed on the VD such that the peak-to-peak sinusoidal current id(t) = 0.05ID. Find the value of the applied peak-to-peak sinusoidal voltage vd(t).arrow_forward
- Question 1: In the circuit shown below, the output (Vo = 10V Max.) Unipolar. The frequency of Primary is 60 Hz. The diodes are Silicon with VD = 0.7V. a. Sketch the output without a Capacitor. b. Determine Voc without a Capacitor. c. Sketch Vs (at the Secondary). d. Determine Voc with a Capacitor of 10 uF across RL. e. Determine the RMS Value of Vp (at the Primary). f. PIV (Peak Inverse Voltage). 10:1 Output C. 22 k1 All diodes are IN4001. | 00000arrow_forwardconsider the figure below that shows an approximated reverse recovery turn-off characteristics for a power diode. Show that the following relation can express the total reverse recovery charge, Qrr = 1/2(trr*ts1) di1/dt =1/2(trr*ts21) di2/dt * ip Isl 1s2! -Irarrow_forwardQ4) Determine and sketch the output voltage across the load resistor (RL) for the circuit shown below (assume Si diodes) V_DC V DC 0,75 (1+ 0.25 V_SIN V SIN RL -1 V SOR V_SQR 0.75 -0.75 V TRI 1 V_TRI -1arrow_forward
- In the clamping circuit below, assume the diode has Von-0.7V and V₁ is a sinusoidal wave with a peak-to-peak amplitude of 10V. How much is the maximum value of the output voltage signal (Vmax)? And how much will it be if we set V₂=2V? Input V1 C1 0.1e-6 9.3 V and 7.3 V 9.3 V and 11.3 V 11.3 V and 7.3 V O 7.3 V and 12.0 V O 12.0 V and 7.3 V Output D1 1N4148 .tran 30-3 V2 0 Vmax V(output) 0.0ms putput MAN Input 0.6ms 1.2ms V(input) 1.8ms 2.4ms 3.0msarrow_forwardA silicon diode has a saturation current of 1 pA at 20°C. Find diode bias voltage when diode current is 3 mA. a 1.103 V b 0.832 V c 0.724 V d 2.132 Varrow_forwardPlease solve the problemarrow_forward
- solve d-farrow_forwardPlease write neatly, and show your work, thanks Please answer in typing format solution please only typing format solution please Please I will like itarrow_forwardA clipper circuit based on diodes are simple way to modify waveform in mechatronics. Assume that the two diodes shown in the circuit below are ideal diodes. If the input voltage in the circuit is a 1 kHz sinusoid with peak amplitude of 8V, sketch the Va.. (t) 10 kO 8V 10 kO Vin Vin(t) D2 Vout(t) RL Ims D1 6V -8V 4V Page | 1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,