(1) My textbook says, "Air molecules don’t get push forward forever because that’s called wind." So, what type of force stops the air molecules from moving forward forever?
Properties of sound
A sound wave is a mechanical wave (or mechanical vibration) that transit through media such as gas (air), liquid (water), and solid (wood).
Quality Of Sound
A sound or a sound wave is defined as the energy produced due to the vibrations of particles in a medium. When any medium produces a disturbance or vibrations, it causes a movement in the air particles which produces sound waves. Molecules in the air vibrate about a certain average position and create compressions and rarefactions. This is called pitch which is defined as the frequency of sound. The frequency is defined as the number of oscillations in pressure per second.
Categories of Sound Wave
People perceive sound in different ways, like a medico student takes sound as vibration produced by objects reaching the human eardrum. A physicist perceives sound as vibration produced by an object, which produces disturbances in nearby air molecules that travel further. Both of them describe it as vibration generated by an object, the difference is one talks about how it is received and other deals with how it travels and propagates across various mediums.
(1) My textbook says, "Air molecules don’t get push forward forever because that’s called wind." So, what type of force stops the air molecules from moving forward forever?
(2) My textbook says, "In an open cylinder, the air molecules can expand and contract from both ends, and if you draw a graph of the displacements of molecules on each end over time, you’ll always end up with whole wavelengths: 2nd harmonic, 4th harmonic, 6th harmonic. In a closed cylinder, you’ll end up with half wavelengths: 1st harmonic, 3rd harmonic, and 5th harmonic waves." Please explain why this happens in more detail.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps