•1 L •√1-x² -1 J-√√1-x² 2-x²-y² x² + y² (x² + y²)5/²dzdydx

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Help me answer please
**Problem Statement:**

Evaluate the integral by changing to cylindrical coordinates:

\[
\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{x^2+y^2}^{2-x^2-y^2} (x^2 + y^2)^{5/2} \, dz \, dy \, dx
\]

**Solution Outline:**

1. **Change of Variables:**
   - Convert Cartesian coordinates \((x, y, z)\) to cylindrical coordinates \((r, \theta, z)\) where \(x = r \cos \theta\), \(y = r \sin \theta\), and \(z = z\).

2. **Coordinate Limits:**
   - The region of integration is a bounded volume in the \(xyz\)-space between \(x^2+y^2 \leq 2\).
   - In cylindrical coordinates, \(r^2 \leq 1\) corresponds to \(x^2 + y^2 \leq 1\).

3. **Integral Transformation:**
   - Replace \(x^2 + y^2\) with \(r^2\) in the integrand.
   - The integrand becomes \((r^2)^{5/2} = r^5\).
   - The differential \(dzdydx\) is transformed to \(r \, dz \, dr \, d\theta\).

4. **New Integral:**
   - The transformed integral becomes simpler to compute in cylindrical coordinates.

By following these steps, the integral can be evaluated in cylindrical coordinates.
Transcribed Image Text:**Problem Statement:** Evaluate the integral by changing to cylindrical coordinates: \[ \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{x^2+y^2}^{2-x^2-y^2} (x^2 + y^2)^{5/2} \, dz \, dy \, dx \] **Solution Outline:** 1. **Change of Variables:** - Convert Cartesian coordinates \((x, y, z)\) to cylindrical coordinates \((r, \theta, z)\) where \(x = r \cos \theta\), \(y = r \sin \theta\), and \(z = z\). 2. **Coordinate Limits:** - The region of integration is a bounded volume in the \(xyz\)-space between \(x^2+y^2 \leq 2\). - In cylindrical coordinates, \(r^2 \leq 1\) corresponds to \(x^2 + y^2 \leq 1\). 3. **Integral Transformation:** - Replace \(x^2 + y^2\) with \(r^2\) in the integrand. - The integrand becomes \((r^2)^{5/2} = r^5\). - The differential \(dzdydx\) is transformed to \(r \, dz \, dr \, d\theta\). 4. **New Integral:** - The transformed integral becomes simpler to compute in cylindrical coordinates. By following these steps, the integral can be evaluated in cylindrical coordinates.
Expert Solution
Step 1

see my solution below

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,