-1 --[*][*]and [:] [^^] into and maps v = into 5 4 Let T: R² R² be a linear transformation that maps u = . Use the fact that T is linear to find the images under T of 4u, 3v, and 4u + 3v.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Help me solve this linear algebra problem to review for my test.

Let \( T: \mathbb{R}^2 \to \mathbb{R}^2 \) be a linear transformation that maps \( \mathbf{u} = \begin{bmatrix} 3 \\ 5 \end{bmatrix} \) into \( \begin{bmatrix} 6 \\ 1 \end{bmatrix} \) and maps \( \mathbf{v} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} \) into \( \begin{bmatrix} -1 \\ 4 \end{bmatrix} \).

Use the fact that \( T \) is linear to find the images under \( T \) of \( 4\mathbf{u}, 3\mathbf{v}, \) and \( 4\mathbf{u} + 3\mathbf{v} \).

---

The image of \( 4\mathbf{u} \) is \( \boxed{} \).
Transcribed Image Text:Let \( T: \mathbb{R}^2 \to \mathbb{R}^2 \) be a linear transformation that maps \( \mathbf{u} = \begin{bmatrix} 3 \\ 5 \end{bmatrix} \) into \( \begin{bmatrix} 6 \\ 1 \end{bmatrix} \) and maps \( \mathbf{v} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} \) into \( \begin{bmatrix} -1 \\ 4 \end{bmatrix} \). Use the fact that \( T \) is linear to find the images under \( T \) of \( 4\mathbf{u}, 3\mathbf{v}, \) and \( 4\mathbf{u} + 3\mathbf{v} \). --- The image of \( 4\mathbf{u} \) is \( \boxed{} \).
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,