Question

Transcribed Image Text:Exercise 3:
1) A magnetic potential vector A is given in the cylindrical coordinates system (up,uo,k) by the
relation A=5 psin (g)k. Prove that its associated magnetic field is given in cartesian coordinates
system (i, j,k) by the relation B =5i.
2) In free space, where
represents the magnetic potential vector and B represents the magnetic field
vector. Prove that AA=-curl (B), with A is the Laplacian operator.
3) Consider that the magnetic field vector is given by the relation B =-HoV Vm (Vm represents the
scalar magnetic potential), deduce that Vm verify Laplace equation.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 2 images

Knowledge Booster
Similar questions
- Suppose there were an asteroid approaching the Earth-Moon system starting from rest at infinity. Under what conditions would it experience forces directing it toward a collision with the Moon rather than toward a collision with Earth? If it were on a path within a narrow cone where the field lines converge directly toward the Moon it would go there. Otherwise it would end at Earth. All the field lines converge at the Earth rather than the Moon. The field at a distance would take take it with equal probability toward the Earth or toward the Moon. The field would take it mostly through the empty space between Earth and Moon with no collisionarrow_forwardA particle of mass m, charge q and position x moves in a constant, uniform magnetic field B which points in a horizontal direction. The particle is also under the influence of gravity, g , acting vertically downwards. Write down the equation of motion and show that it is invariant under translations x -> x + x0. Obtain x = \alpha x \times n + gt + a where \alpha = qB/m, n is a unit vector in the direction of B and a is a constant vector. Show that, with a suitable choice of origin, a can be written in the form a = an. By choosing suitable axes, show that the particle undergoes a helical motion with a constant horizontal drift. Suppose that you now wish to eliminate the drift by imposing a uniform electric field E. Determine the direction and magnitude of E. Trainingarrow_forwardA magnetic dipole moment of m = (7.50, -8.38, 4.59) Am² is inside a uniform magnetic field of B = (3.34, -6.77, 6.79) T. What is the potential energy of the dipole? (a) What is the angle between the magnetic dipole moment vector and the magnetic field vector? (b) What is the magnitude of the torque acting on the dipole?arrow_forward
- A uniform magnetic field B has constant strength b teslas in the z-direction [i.e., B = (0, 0, b)] (a) Verify that A =Bxr is a vector potential for B, where r = (x, y, 0) (b) Calculate the flux of B through the rectangle with vertices A, B, C, and D in Figure 17. F B FIGURE 17 A = (8,0,4), B (8,5,0), C = (0,5,0), D = (0,0,4), F = (8,0,0) Flux(B) = -40barrow_forwarddo P(0,0.2) R FIGURE 3-11 A uniformly charged disk (Example 3-8).arrow_forwardConsider two infinitely long and parallel wires separated by distance d and carrying currents I₁ = -12. (a) Find the magnitude and direction of the vector potential A(r1,72) at a point P where r₁ and r2 represent the distances to P from wire 1 and wire 2 respectively. (b) What is the magnitude of A for r₁ = r₂? (c) What is the value of the magnetic field B for r₁ = r₂? (d) Given that B = V x A, how can you reconcile the answers to (b) and (c) above?arrow_forward
arrow_back_ios
arrow_forward_ios