06. If y(t) is the solution of the ivp {{ S__2e-28 A._y(t) = L-1 B. y(t) = -1 C. y(t) = L-1 s+6 83 3 (8-2)2 + (8 +22} (t) 2e-2s ( 5³ (8-2)² + s +2} (t) 83 E. y(t) = L-¹ 2e-2s ³ (s — 2)² 83 D. y(t) = -1_2e-28 s³ (s — 2)² + 1 8-2 y" - y(0) = 1 - 2)² (s- (t) e-28 { +6 (8³ (8-2)2 + (8-2)2} (t) S3 and y'(0) = 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
06. If y(t) is the solution of the ivp
A. y(t) = (-1
B. y(t) = -1 [_2e-28
D. _y(t) = L-¹
-1
s +6
2e-28
+
S³ (S-2)² (s- 2)²
22}
E. y(t) = L-¹
Jy" - 4y + 4y = (t - 2)² u₂ (t)
y(0) = 1 and y'(0) = 2
C. L-1
s³ (s
2}
c. y(t) = -¹ {~² (2-2)² + = = 2 }0
(t)
S
-
1
³ (0-2)² +*+2} (²)
(s
(t)
1
2e-2s
2) ² } (²
s³ (s - 2)² (s - 2)²
+ (t)
e-2s
s +6
s³
(s
83 (s − 2)² + (S-2)²} (t)
then
Transcribed Image Text:06. If y(t) is the solution of the ivp A. y(t) = (-1 B. y(t) = -1 [_2e-28 D. _y(t) = L-¹ -1 s +6 2e-28 + S³ (S-2)² (s- 2)² 22} E. y(t) = L-¹ Jy" - 4y + 4y = (t - 2)² u₂ (t) y(0) = 1 and y'(0) = 2 C. L-1 s³ (s 2} c. y(t) = -¹ {~² (2-2)² + = = 2 }0 (t) S - 1 ³ (0-2)² +*+2} (²) (s (t) 1 2e-2s 2) ² } (² s³ (s - 2)² (s - 2)² + (t) e-2s s +6 s³ (s 83 (s − 2)² + (S-2)²} (t) then
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,