. Amniocentesis is a medical diagnostic for determining whether or not a pregnant woman is likely to be carrying a fetus with a serious birth defect. Over the past decades, the use of this test has become widespread. Assume that in 95 percent of the instances when the test is applied to a fetus with a serious birth defect it correctly predicts the result. Also assume that 98 percent of the time when the test is applied to a fetus without a serious birth defect, it correctly predicts the result. Next assume that the probability of a 25 year old pregnant woman carrying a fetus with a serious birth defect is .001 and the corresponding probability for a 40 year old woman is .01. If when applied to a 25 year old pregnant woman, the test indicates the presence of a serious birth defect, what is the probability that this prediction is correct?
Contingency Table
A contingency table can be defined as the visual representation of the relationship between two or more categorical variables that can be evaluated and registered. It is a categorical version of the scatterplot, which is used to investigate the linear relationship between two variables. A contingency table is indeed a type of frequency distribution table that displays two variables at the same time.
Binomial Distribution
Binomial is an algebraic expression of the sum or the difference of two terms. Before knowing about binomial distribution, we must know about the binomial theorem.
10. Amniocentesis is a medical diagnostic for determining whether or not a pregnant woman is likely to be carrying a fetus with a serious birth defect. Over the past decades, the use of this test has become widespread. Assume that in 95 percent of the instances when the test is applied to a fetus with a serious birth defect it correctly predicts the result. Also assume that 98 percent of the time when the test is applied to a fetus without a serious birth defect, it correctly predicts the result.
Next assume that the
If when applied to a 25 year old pregnant woman, the test indicates the presence of a serious birth defect, what is the probability that this prediction is correct?
Step by step
Solved in 2 steps with 2 images