Abstract
The primary purpose of the lab was to test and observe the effects of the process of osmosis on decalcified eggs. Before the process, the initial weights of the eggs were taken and noted. Two eggs were then immersed in a deionized water solution. The same was repeated to the other two solutions of 20% and 40% sucrose. The weights of the eggs were measured after 15 minutes to note the change in mass due to osmosis and again after 60 minutes to take the final measurement. Overall, while some human error might arise in the weighing process, care was taken in handling the eggs and during the weighing process. As such, it was found that the eggs behaved as predicted. It was found that the eggs placed in the hypertonic solution lost
…show more content…
In all living organisms, water and nutrients make their way to tissues and cells because of osmosis, which for all intents and purposes is essential to the survival of cells (Rao & Kaur, 2007). Besides, cells and by extension organisms also get rid of their waste products by osmosis. In animals, for instance, this process occurs in renal tubules (kidneys) that filter and clean the blood to get rid of toxic metabolites and other chemicals. In order to understand how cells acquire and get of nutrients, it is imperative to know how osmosis operates. The objective of this experiment is, therefore, to study six decalcified eggs to understand and demonstrate the process of osmosis between the inside of the egg’s membrane and multiple environments of water/solute (solutions) of different concentrations: deionized water, 20% sucrose, and 40% sucrose.
Purpose
This exercise is aimed at giving a better understanding of the process of osmosis by analyzing how the decalcified eggs behave under different experimental conditions. The shell-less eggs used represented a model for a living cell and its selectively (semi) permeable membrane.
Hypothesis
The eggs will change in mass in all the three solutions, indicating that osmosis will occur when the concentration of two solutions separated by a semipermeable membrane is different, so that equilibrium is established.
Predictions
The experiment works under
What will happen to the egg when a student tests osmosis with 3 different soultions in a cup.The student is trying to see or find the effects of osmosis on an egg.Osmosis is the movement of water molecules through a selecfively permeable membrane. Diffuision is when something spreads more widely and equilibrium means when somethings is at rest due to equal opposite forces. The student wants to find out if the egg will shrink, fill up, or change in any way.
In the rubber egg lab also known as the osmosis lab, I first measured the circumference of the egg which was 6 inches. The egg had no cracks and was hard. I placed the egg in the vinegar and within seconds the egg started to bubble. These bubbles were carbon dioxide. After 72 hours the shell of the egg had started to dissolve or flake. This would be considered passive transport as the vinegar diffused across the egg shell without any force. Seventy-two hours into the experiment the membrane was exposed, and had a circumference of 8 inches. Before the egg had a shell and you couldn’t see through it but once the vinegar acted as an acetic acid it broke down the shell and left a yellow membrane that felt like rubber this is an example of diffusion. I then placed the egg in another container and put corn syrup over the egg for 24 hours. The egg had shriveled and shrunk, the water had left the egg and went into the syrup and that is what caused the egg to shrink. The corn syrup is essentially pure sugar with very little water so the osmotic pressure is very low. I then placed the shriveled egg in water and waited for another 24 hours. After observation the egg had no
In this experiment, we will investigate the effect of solute concentration on osmosis. A semi‐permeable membrane (dialysis tubing) and sucrose will create an osmotic environment similar to that of a cell. Using different concentrations of sucrose (which is unable to cross the membrane) will allow us to examine the net movement of water across the membrane.
The purpose to this experiment was to study the effect of osmosis in de-shelled chicken eggs in different percentages of sucrose solutions. Osmosis is the process, in which, water moves across a differentially permeable membrane. The eggs were soaked in vinegar to remove the outside hard shell but still leave the egg in its membrane. By placing the six de-shelled in different sucrose solutions, we tested the rate of osmosis. The eggs were placed in the solutions for an hour and weighed in fifteen minute intervals. Then, each weight was recorded and graphed. The results showed that the egg in the water solution gained the most weigh and the only other egg that gained a little weight was the one in the 10% solution. All the other eggs in the different solutions lost weight, even the unknown solution. According to the results the egg that was in the distilled water solution gained weight because it is the hypertonic solution. All the other eggs lost weight because they were placed in hypotonic solutions with different concentrations of sucrose. The egg that was placed in the higher concentration of sucrose lost the most weight. So, the higher the concentration of sucrose, the more water the egg lost.
To use the properties of diffusion and osmosis to see the effects of either corn syrup or water on a shell-less raw egg over a three day period. While looking to see the effects of these liquids on the raw egg, one can also apply the properties of hypotonic, hypertonic, and isotonic solutions.
The osmolarity of a solution is the concentration measured of a solute. To determine the concentration of a solution, one must first understand what osmosis is and how it works. Osmosis is the spontaneous passage or diffusion of water or other solvents through a semipermeable membrane according to the Britannica Encyclopedia. The semipermeable membrane is one that blocks the passages of dissolved substances such as solutes. This process, in more recent times, provides a more accurate study of how water can diffuse across a cell membrane when water molecules have a high concentration to an area in which they have a low concentration. It was originally studied in 1877 by plant physiologist, Wilhelm, Pfeffer. (Britannica Encyclopedia 2015).
The lab for this paper was conducted for the topic of osmosis, the movement of water from high to low concentration. Five artificial cells were created, each being filled with different concentrated solutions of sucrose. These artificial cells were placed in hypertonic, hypotonic, or isotonic solutions for a period of 90 min. Over time, the rate of osmosis was measured by calculating the weight of each artificial cell on given intervals (every 10 minutes). The resulting weights were recorded and the data was graphed. We then could draw conclusions on the lab.
The eggs will increase and decrease in mass when placed solutions with different amount of solutes. This
Osmosis was demonstrated when eggs were put into vinegar, an isotonic solution, because the vinegar could pass through the selectively permeable membrane. Thus, proving my first formed hypothesis about the egg enlarging when put in vinegar. Osmosis was also demonstrated when the eggs were put into water, a hypotonic solution, because it had the same effect as before. The water could pass through the membrane and enlarge. Unfortunately, my hypothesis was wrong about water not affecting the egg at all. Finally, when eggs were put in corn syrup, a hypertonic solution, it caused the egg to shrink because of the high concentration causing the water in the egg to move outside of the membrane to the corn syrup. Proving my hypothesis was correct about
An egg has a semi-permeable membrane, thus processes like osmosis could occur. Osmosis is the movement of water molecules from an area of higher water concentration to an area of a lower water concentration. Osmosis is important, especially for living organisms, as they help distribute nutrients in the body. An egg’s mass would change when it is soaked in different substances. The goal of this experiment was to investigate how an egg changes through osmosis. This experiment was done to show how substances affect the mass of an egg. To start off, an egg’s mass was measured by putting the egg in a beaker then placing it on a mass scale. The beaker was then filled with vinegar and left alone for twenty-four hours. After a day, the egg was taken
Osmosis is the diffusion of water from an area of low concentration to an area of high concentration across a semi-permeable membrane. The purpose of this lab is to compare the three different types of solutions affect on the relative size of the vacuole to the cell, the outer membrane of onion red cells (tunics) are used to figure out the different types. In the red onion you can see effects promptly when the onion cells are placed in different type of solutions. The effect of the solutions is shown through the purple part within the membrane since that’s where the vacuoles are present.
Osmosis is the passive movement of water from an area of low solute concentration to an area of high solute concentration, normally across a membrane which prevents the movement of solvent. This is a process by which materials may move into, out of, or within cells. Osmosis doesn’t depend on energy provided by living organisms but is affected by the properties of the cell membrane. The rate of osmosis is dependent on such factors as temperature, pressure, molecular properties such as size and mass, and the concentration gradient. In osmosis, the relationship between a solute’s concentration outside of cell and inside of a cell is described in terms of the tonicity of the solution outside of the cell. A cell is in a hypotonic solution when the solute is more concentrated inside the cell and therefore water moves into the cell. In this solution the cell swells as water enters, this may continue until it ruptures or hemolyzes. In the reverse condition, the cell is in a hypertonic solution
Osmosis is a natural occurrence constantly happening within the cells of all living things. For osmosis to occur, water molecules must move across a semipermeable membrane from an area of low concentration to an are of high concentration. In order to understand osmosis, people must understand the different types of concentrations that can be present within solution. One of them is an Isotonic solution where the concentration of dissolved particles is equal to that of a cell’s. Another is a hypertonic solution where there is a higher concentration of dissolved particles then inside the cell. And lastly there is a hypotonic solution where there are less dissolved particles than inside the cell. As dissolved particles move to a region of lower concentration, water moves the opposite direction as a result of there being less water in the highly concentrated region. In this experiment, gummy bears were placed in salt water, sugar water, and tap water to find the measure of osmosis between the solution and gummy bear.
In this experiment, the osmotic concentration is found with potato slices placed in sucrose solutions. Osmosis in this model is the net movement of water between the potato cell and the sucrose solution. The movement of water is determined by the molarity of sucrose. As the molarity of sucrose increased then the concentration in the solution also increased. H2O will move through the cell membrane to areas of higher concentration in order to reach equilibrium. If cells are placed
Osmosis took place in the egg under a variety of conditions because the membrane of the egg has tiny openings where water can pass through from high to low concentrations. On day one, it was a hypotonic solution because the higher concentration of water in the vinegar moved to the smaller concentration in the egg. This means the egg was filled with water, which resulted in the eggs increase in size. On day three, the hypotonic solution occurred because the corn syrup had a lower concentration of water than the egg. That means the egg released water into the corn syrup, which resulted in the eggs decrease in size. On day four, the egg was placed in water which resulted in an isotonic solution where the concentrations become even. This