Background During photosynthesis plants use the suns energy to form chemical bonds on carbohydrates. The formula for photosynthesis is 6CO2 +6H2O + 686 kilocalories C6H12O6 + 6O2. The carbon comes from the atmosphere and the water (H2O) comes from what the tree is able to absorb from the soil. The light in the equation comes from the sun. This is able to be absorbed by different pigments in the plants leaf. The pigments are stored in organelles called chloroplasts; these organelles are what is responsible for photosynthesis. There are may different pigments in each leaf. In this experiment we determine what wavelength of light is optimum for energy absorption in a spinach leaf. I believe that the violet light will be optimum because is is a wavelength absorbed by the leaf and its wavelength contains the most energy.
Materials and Methods This experiment will will need several materials. Materials include: spectrophotometer, spinach leaf, chromatography paper, coin, and a test tube containing containing chromatography solvent, cuvette, and water. To preform the experiment, the following instructions will need to be preformed:
• Get a strip of chromatography paper cut in a strip that will fit in a test tube. Draw a line 2cm from the bottom, this line must be drawn in pencil. Ensure you are handling the paper by its edges to prevent oil from finders from contaminating the paper.
• Get a spinach leaf to obtain pigments from. Set the chromatography paper on top of
And finally into test tube 3, I pipetted 1.0 ml turnip extract and 4.0 ml of water. The contents of test tube 1 was poured into a spectrometer tube and labeled it “B” for blank. “B” tube was now inserted it into the spectrometer. An adjustment to the control knob was made to zero the absorbance reading on the spectrometer since one cannot continue the experiment if the spectrometer is not zeroed. A combination of two people and a stop watch was now needed to not only record the time of the reaction, but to mix the reagents in a precise and accurate manner. As my partner recorded the time, I quickly poured tube 3 into tube 2. I then poured tube 2 into the experiment spectrometer tube labeled “E” and inserted it into the spectrometer. A partner then recorded the absorbance reading for every 20 seconds for a total of 120 seconds. After the experiment, a brown color in the tube should be observed to indicate the reaction was carried out. Using sterile techniques, any excess liquid left was disposed
7. Tape the strip to a pencil and rest the pencil on top of the jar so that the strip hangs into the jar. The goal is to have the end of the chromatography strip just touching the surface of the solvent solution, with the colored dots above the surface of the liquid. Make sure that the colored spots do not come in direct contact with the liquid in the bottom of the glass.
Photosynthesis occurs each time the sun’s light reaches the lives of a plant. The chemical ingrediants for photosynthesis are carbon dioxide (CO2), a gas that passes from the air into a plant via tiny pores, and water (H20), which absorbed from the soil by the plant’s roots. Inside leaf cells, tiny structures called chloroplasts use light energy to rearrange the atoms of the ingrediants to produce sugars, most importantly glucose (C6H12O6) and other organic molecules. Chlorophyll gives the plant its green color (Simon, 02/2012, pp. 92-93). Chemical reactions transfers the sun’s light energy into the chemical bonds that hold energy-carrying molecules. The most common are
On a thin chromatography plate, five spots were placed ( as shown in table 2) and the plate was developed using chloroform/methanol. This was later visualized with dragendorff’s reagent under the UV light. All separated components were observed, identified and recorded.
In the beginning of this experiment, our TA added water, salt, and 75/25 hexane/acetone to spinach leaves to a blender and blended the mixture to assume equal amounts for each group and to avoid erros if each student had to do the blending. The addition of the water to the mixture allowed the it to separate into a distinct organic layer after being run in a centrifuge, which was available to be collected at the top of the centrifuge. Salt reduces solubility, which will force the organic parts of the mixture (the desired pigments for example) to separate into the organic layer at the top. Lastly, 75/25 hexane/acetone is added because this is a moderately polar solvent and will useful for both the non-polar and polar pigments present within the spinach leaves. A mixed solution of hexanes and acetone must be used because acetone is very polar, while hexane in very non-polar, and the spinach leaves contain both non-polar and polar pigments in them that are important in the extraction and for further analysis. The mixture was placed in the centrifuge so the solids in the mixture (mostly cellulose) could be separated from the liquids into separate distinct layers for further extraction and testing. In the tube, the organic substances separated into the top layer, whereas the water layer remains at the bottom of the tube below the solid layer made up of mainly cellulose.
After wearing the gloves we obtained a chromatography vial from professor and label it with my and my peer initials. We dried up the chromatography vial in fume hood and added 1 ml of chromatography solvent to the vial. Then we took a chromatography strip and measure it 1.5 cm with ruler from one end of the strip and drew a line with pencil we cut two small pieces below the pencil line to form a pointed end. We applied spinach on the strip using quarter to rub the spinach leaf on the line that we drew on the strip and put it into the chromatography vial and placed that in fume hood. We observed as the solvent was moving up the chromatography strip by capillary action. When the solvent was reached approximately 1 cm from the top of the strip then we removed the cap from the vial. We took out the strip from the vial using forceps and marked up the location of the solvent front because it evaporates quickly. We measure out the distance as well as the pigment in order to find out the rf value. Moreover we compared rf values to the one in reference list in order to identify the
In this lab, varying wavelengths were used to test how light affects photosynthesis and respiration as a whole. The absorbance of lights from 380 nm to 720 nm of chlorophyll pigment from the Elodea sample
Photosynthesis occurs in the palisade mesophyll of plant leaves. During photosynthesis, carbon dioxide is broken up into 6 carbon for the sugar molecule and 12 oxygen. In this lab, I determined the rate of photosynthesis in spinach
The following procedure dealt with a chromatogram. The materials needed are: a pencil, safety goggles, scissors, chromatography paper strip, capillary tube, spinach plant pigment extract, test tube, cork stopper, graduated cylinder, chromatography solvent (alternative isopropyl alcohol), metric ruler, stopwatch or clock with a secondhand, hook/fashioned paperclip, paper towels, test tube rack, and mortar and pestle. First we obtained a strip of chromatography paper and cut it so it would fit inside a test tube (with it barely touching the bottom of the tube). Also, when touching the strip, touch the sides only. Then we attached (firmly) the top of the strip to a hook (or fashioned paperclip at bottom of the cork stopper). Make sure it fits in the test tube. Next we used the pencil to draw a faint line across the strip two centimeters from the bottom tip of the strip. We placed the cork and strip in place, and we put a mark on the test tube one centimeter below the top of the stopper.
The green pigment involved in photosynthesis is chlorophyll. Chlorophyll is green in appearance because it absorbs red and blue light, making these colours unable to be seen. It is the reflection of the green light that reaches out eyes, giving chlorophyll a green colour. This green light that can be seen cannot be used by the plant for photosynthesis. Therefore, theoretically growth should be inhibited in the plants only exposed to green light.
7. We added 1.0 mol dm-3 of NaOH into tube #8 and than added 1.0 mold dm-3 of mold dm-3 HCl until a change in color is observed.
However, the photosynthetic process can be affected by different environmental factors. In the following experiment, we tested the effects that the light intensity, light wavelength and pigment had on photosynthesis. The action spectrum of photosynthesis shows which wavelength of light is the most effective using only one line. The absorption spectrum plots how much light is absorbed at different wavelengths by one or more different pigment types. Organisms have different optimal functional ranges, so it is for our benefit to discover the conditions that this process works best. If the environmental conditions of light intensity, light wavelength and pigment type are changed, then the rate of photosynthesis will increase with average light intensity and under the wavelengths of white light which will correspond to the absorption spectrum of the pigments. The null hypothesis to this would be; if the environmental conditions light intensity, light wavelength and pigment type are changed, then the rate of photosynthesis will decrease with average light intensity and under the white light which will correspond to the absorption spectrum of the pigments.
The purpose of this experiment was to take spinach leaves and extract the chlorophyll and carotenoid pigments by using acetone as the solvent. The chlorophyll and carotenoid pigments were extracted by using column chromography and alumina was used as the solvent. Solvents of different polarities were used, starting with the least polar, to extract the certain components from the leaves. They were then analyzed by using thin- layer chromatography.
Introduction: Photosynthesis can be defined as a solar powered process that removes atmospheric carbon dioxide and transforms it into oxygen and carbohydrates (Harris-Haller 2014). Photosynthesis can be considered to be the most important biochemical process on Earth because it helps plants to grow its roots, leaves, and fruits, and plants serve as autotrophs which are crucial to the food chain on earth. Several factors determine the process of photosynthesis. Light is one these factors and is the main subject of this experiment. The intensity of light is a property of light that is important for photosynthesis to occur. Brighter light causes more light to touch the surface of the plant which increases the rate of photosynthesis (Speer 1997). This is why there is a tendency of higher rates of photosynthesis in climates with a lot of sunlight than areas that primarily do not get as much sunlight. Light wavelength is also a property of
Without photosynthesis we would not be able to receive energy. We should be more appreciate of plants, without them we would not survive. This paper will explain the basic components require for photosynthesis, the role of chlorophyll, how energy is transferred, and photosystems I and II and the most precious product results of photosynthesis.