Introduction:
The purpose of this experiment was to synthesize t-pentyl chloride from the reaction of t-pentyl alcohol and concentrated HCl. This reaction occurred through an SN1 reaction, a unimolecular nucleophilic substitution reaction. This was a First Order Rate Reaction where the rate of t-pentyl chloride was dependent only on the concentration of t-pentyl alcohol. After the reaction was completed, the products were achieved via 3 liquid-liquid extractions and then after by simple distillation. In the liquid- liquid extractions a solute was transferred from one solvent to another. Then in the simple distillation the miscible liquids or the solution, was separated by differences in boiling points. After this the product was determined through infrared spectroscopy.
Procedure:
Isolation of Crude Product
A mixture of 22 ml
…show more content…
In the process, extraction and distillation techniques were used. The theoretical amount of t- pentyl chloride was 17.358g, while 15.78 g was the actual amount produced which gave a percent yield of 90.9%. An error occurred while performing the experiment, the filtered dried product in the distillation process was placed in the wrong flask. Due to this that part of the experiment had to be redone and the new filtered product had some aqueous solution in it, which caused the boiling point to be under the specified temperature. The boiling point then was at 50 ℃ compared with the expected range of 79- 84 ℃. The IR spectrum used above was from another group’s results. The experimental IR spectrum has more prominent peaks in the 3000 cm-1 range compared to the expected IR spectrum. Nonetheless, the experimental IR spectrum resembles the expected IR spectrum in the sense that the peaks are closely around the same wavenumber range. This is probably due to the product being distilled at the right boiling
After 10 minutes the reaction liquid was separated from the solid using a vacuum filtration system and toluene. The product was stored and dried until week 2 of the experiment. The product was weighed to be 0.31 g. Percent yield was calculated to be 38.75%. IR spectra data was conducted for the two starting materials and of the product. Melting point determination was performed on the product and proton NMR spectrum was given. The IR spectrum revealed peaks at 1720 cm-1, which indicated the presence of a lactone group, and 1730 cm-1, representing a functional group of a carboxylic acid (C=O), and 3300cm-1, indicating the presence of an alcohol group (O-H). All three peaks correspond with the desired product. A second TLC using the same mobile and stationary phase as the first was performed and revealed Rf Values of 0.17 and 0.43for the product. The first value was unique to the product indicating that the Diels-Alder reaction was successful. The other Rf value of 0.43 matched that of maleic anhydride indicating some
Using SN1 reaction mechanism with hydrochloric acid, t-Pentyl alcohol was converted to t-Pentyl chloride in an acid catalyzed reaction. The reaction took place in a separatory funnel designed to separate immiscible liquids. The crude product was extracted by transferring a solute from one solvent to another. The process of washing the solutions by phase transfer was used in order to remove impurities from the main solvent layer. Finally, the crude product was dried with anhydrous Calcium chloride and purified once more by simple distillation technique.
The purpose of this experiment was to synthesize the Grignard reagent, phenyl magnesium bromide, and then use the manufactured Grignard reagent to synthesize the alcohol, triphenylmethanol, by reacting with benzophenone and protonation by H3O+. The triphenylmethanol was purified by recrystallization. The melting point, Infrared Spectroscopy, 13C NMR, and 1H NMR were used to characterize and confirm the recrystallized substance was triphenylmethanol.
Once the distillate had been collected into two separate vials, both distillates were washed with aqueous sodium bicarbonate (1.5-ml, 5%). The aqueous layer (lower) was extracted from both vials using a pipette and put into a chemical waste bin. The organic (alkene) layer was then dried with anhydrous calcium chloride pellets (3 pellets per vial). Both distillates were analyzed using gas chromatography, and each peak shown was identified to be one of the alkenes. Analysis of the graph was used to determine the major and minor products of the reaction.
Distillation. Transfer the clear liquid to a dry 25-mL round-bottom flask using a Pasteur pipet. Add a boiling stone and distill the crude t-pentyl chloride in a dry apparatus. Collect the pure t-pentyl chloride in a receiver cooled in ice. Collect the material that boils between 78°C and 84°C. Weigh the product and calculate the percentage yield.
In this experiment, the main objective was to synthesize a ketone from borneol via an oxidation reaction and secondly, to produce a secondary alcohol from camphor via a reduction reaction. Therefore, the hypothesis of this lab is that camphor will be produced in the oxidation reaction and isoborneol will be the product of the reduction reaction because of steric hindrance. For the oxidation step, a reflux will be done and then a microscale reflux for the reduction step. The products will be confirmed using Infrared spectroscopy, the chromic acid test, 2,4-DNP test and 13C NMR spectroscopy. The results of this
The light yellow precipitate was collected by suction filtration using a Hirsch funnel. The product was washed with two 1-mL portions of cold methanol followed by two 1-mL portions of diethyl ether. The product was dried in the oven at 110°C. The IR spectrum as a KBr pellet was obtained for the product and inosine for analysis.
The purpose of this experiment is to determine the nucleophilic strength of chloride and bromide ions as it reacts with 1-butanol (n-butyl) and 2-methyl-2-propanol (t-butyl alcohol) under SN1 and SN2 conditions.
After adding the anise oil, the mixture was allowed to heat for 20 minutes rather than 15 minutes as stated. Lastly, the IR spectrum analysis was previously prepared so no actual IR spectrum analysis was carried out during the course of the experiment.
Experiment 55 consists of devising a separation and purification scheme for a three component mixture. The overall objective is to isolate in pure form two of the three compounds. This was done using extraction, solubility, crystallization and vacuum filtration. The experiment was carried out two times, both of which were successful.
Abstract: One mixture of two unknown liquid compounds and one mixture of two unknown solid compounds were separated, isolated, purified, and characterized by boiling point. Two liquid unknowns were separated, isolated, and purified via simple distillation. Then, the process of an acid-base extraction and washing were used to separate two unknown compounds into two crude compounds: an organic acid and a neutral organic compound. Each crude compound was purified by recrystallization, resulting in a carboxylic acid (RCO2H) and a pure organic compound (RZ). The resulting mass of the pure carboxylic acid was 1.688g with a percent recovery of 31.80%, the boiling range was 244-245 °C, and its density was 2.0879g/mL. The resulting mass of the pure organic solid was 2.4902g with a percent recovery of 46.91%, the boiling range was 52.0-53.4°C, and its density was 1.5956 g/mL.
The boiling range of the 1-pentyl ethanoate distillate was approximately between 149-151°C. This was indicated by the formation of the distillate and when the mixture of the purified 1-pentyl ethanoate started to vigorously
Distillation is a method of separating two volatile chemicals on the basis of their differing boiling points. During this lab, students were given 30 mL of an unknown solution containing two colorless chemicals. Because the chemicals may have had a relatively close boiling point, we had to employ a fractional distillation over a simple distillation. By adding a fractionating column between the boiling flask and the condenser, we were able to separate the liquids more efficiently due to the fact that more volatile liquids tend to push towards the top of the fractionating column, thereby leaving the liquid with the lower boiling point towards the bottom. After obtaining the distillates, we utilized a gas chromatograph in order to analyze the volatile substances in the gas phase and determine their composition percentage of the initial solution. Overall, through this lab we were able to enhance our knowledge on the practical utilization of chemical theories, and thus also demonstrated technical fluency involving the equipment.
The dehydration of 2-methyl-2-butanol was performed using sulfuric acid and phosphoric acid in order to synthesize alkene products 2-methyl-1-butene and 2-methyl-2-butene. After carrying out steam distillation to isolate the organic alkenes from aqueous components within the reaction mixture, the purity and characterization of the products were then assessed through various analytical methods including Gas Chromatography (GC), Infrared Radiation (IR) Spectroscopy, and Nuclear Magnetic Resonance (NMR) Imaging. Through the characterization of the final products, it was found that little impurities remained in the final reaction solution and according to the GC, no alcohol remained in the vial after the reaction was complete. The actual yield
A good yield of isopentyl acetate was obtained during this experiment. Loss of the product was likely through transferring liquid from separatory funnel to the Erlenmeyer flask and residual material left in the distillation flask. Using an organic solvent like benzene or cyclohexane as a transfer agent would improve the yield, since their boiling points were around 80 oC and could be easily separated from the final product through simple distillation. However this